Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 13(8)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34437423

RESUMO

The mycotoxin deoxynivalenol (DON), produced in wheat, barley and maize by Fusarium graminearum and Fusarium culmorum, is threatening the health of humans and animals. With its worldwide high incidence in food and feed, mitigation strategies are needed to detoxify DON, maintaining the nutritional value and palatability of decontaminated commodities. A promising technique is biological degradation, where microorganisms are used to biotransform mycotoxins into less toxic metabolites. In this study, bacterial enrichment cultures were screened for their DON detoxification potential, where DON and its potential derivatives were monitored. The residual phytotoxicity was determined through a bioassay using the aquatic plant Lemna minor L. Two bacterial enrichment cultures were found to biotransform DON into a still highly toxic metabolite for plants. Furthermore, a cytotoxic effect was observed on the cellular viability of intestinal porcine epithelial cells. Through liquid chromatography high-resolution mass spectrometry analysis, an unknown compound was detected, and tentatively characterized with a molecular weight of 30.0 Da (i.e., CH2O) higher than DON. Metabarcoding of the subsequently enriched bacterial communities revealed a shift towards the genera Sphingopyxis, Pseudoxanthomonas, Ochrobactrum and Pseudarthrobacter. This work describes the discovery of a novel bacterial DON-derived metabolite, toxic to plant and porcine cells.


Assuntos
Bactérias/metabolismo , Tricotecenos/metabolismo , Animais , Araceae/efeitos dos fármacos , Bactérias/genética , Técnicas Bacteriológicas , Biotransformação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Código de Barras de DNA Taxonômico , Células Epiteliais/efeitos dos fármacos , Suínos , Tricotecenos/toxicidade
2.
Microorganisms ; 8(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105779

RESUMO

The aflatoxin type B and G producer Aspergillus novoparasiticus was described in 2012 and was firstly reported from sputum, hospital air (Brazil), and soil (Colombia). Later, several survey studies reported the occurrence of this species in different foods and other agricultural commodities from several countries worldwide. This short communication reports on an old fungal strain (CBS 108.30), isolated from Pseudococcus sacchari (grey sugarcane mealybug) from an Egyptian sugarcane field in (or before) 1930. This strain was initially identified as Aspergillus flavus; however, using the latest taxonomy schemes, the strain is, in fact, A. novoparasiticus. These data and previous reports indicate that A. novoparasiticus is strongly associated with sugarcane, and pre-harvest biocontrol approaches with non-toxigenic A. novoparasiticus strains are likely to be more successful than those using non-toxigenic A. flavus strains. Further studies on the association between A. novoparasiticus and Pseudococcus sacchari might shed light on the distribution (and aflatoxin contamination) of this species in sugarcane. Additionally, the interaction between A. novoparasiticus, Pseudococcus sacchari, and sugarcane crop under different scenarios of climate change will be critical in order to get more insight into the host-pathogen interaction and host resistance and propose appropriate prevention strategies to decrease mycotoxin contamination and crop loss due to A. novoparasiticus attack.

3.
Toxins (Basel) ; 10(11)2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30373310

RESUMO

An eco-friendly and efficient one-step approach for the synthesis of carbon quantum dots (CDs) that encapsulated molecularly imprinted fluorescence quenching particles (MIFQP) and their application for the determination of zearalenone (ZEA) in a cereal sample are described in this study. CDs with high luminescence were first synthesized, and then encapsulated in the silica-based matrix through a non-hydrolytic sol-gel process. The resulting ZEA-imprinted particles exhibited not only an excellent specific molecular recognition of ZEA, but also good photostability and obvious template binding-induced fluorescence quenching. Under the optimized conditions, the fluorescence intensity of MIFQP was inversely proportional to the concentration of ZEA. By validation, the detection range of these fluorescence quenching materials for ZEA was between 0.02 and 1.0 mg L-1, and the detection limit was 0.02 mg L-1 (S/N = 3). Finally, the MIFQP sensor was successfully applied for ZEA determination in corn with recoveries from 78% to 105% and the relative standard deviation (RSD %) was lower than 20%, which suggests its potential in actual applications.


Assuntos
Contaminação de Alimentos/análise , Zea mays/química , Zearalenona/análise , Carbono , Fluorescência , Impressão Molecular , Pontos Quânticos
4.
Talanta ; 169: 30-36, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28411818

RESUMO

Boar taint is a contemporary off-odor present in meat of uncastrated male pigs. As European Member States intend to abandon surgical castration of pigs by 2018, this off-odor has gained a lot of research interest. In this study, rapid evaporative ionization mass spectrometry (REIMS) was explored for the rapid detection of boar taint in neck fat. Untargeted screening of samples (n=150) enabled discrimination between sow, tainted and untainted boars. The obtained OPLS-DA models showed excellent classification accuracy, i.e. 99% and 100% for sow and boar samples or solely boar samples, respectively. Furthermore, the obtained models demonstrated excellent validation characteristics (R2(Y)=0.872-0.969; Q2(Y)=0.756-0.917), which were confirmed by CV-ANOVA (p<0.001) and permutation testing. In conclusion, in this work for the first time highly accurate and high-throughput (<10s) classification of tainted and untainted boar samples was achieved, rendering REIMS a promising technique for predictive modelling in food safety and quality applications.


Assuntos
Tecido Adiposo/química , Androsterona/análise , Análise de Alimentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Espectrometria de Massas/instrumentação , Carne/análise , Tecido Adiposo/metabolismo , Animais , Análise de Alimentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Espectrometria de Massas/métodos , Suínos
5.
Toxicol Lett ; 233(1): 24-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25542142

RESUMO

Mycotoxins are toxic, secondary metabolites produced by fungi. They occur in a wide variety of food and feed commodities, and are of major public health concern because they are the most hazardous of all food and feed contaminants in terms of chronic toxicity. In the past decades, it has become clear that in mycotoxin-contaminated commodities, many structurally related compounds generated by plant metabolism, fungi or food processing coexist with their free mycotoxins, defined as modified mycotoxins. These modified xenobiotics might endanger animal and human health as they are possibly hydrolysed into their free toxins in the digestive tract of mammals, and may consequently contribute to an unexpected high toxicity. As modified toxins represent an emerging issue, it is not a surprise that for most toxicological tests data are scarce to non-existent. Therefore, there is a need to elucidate the disposition and kinetics of both free and modified mycotoxins in mammals to correctly interpret occurrence data and biomonitoring results. This review emphasizes the current knowledge on the metabolism of modified mycotoxins using in vitro and in vivo models.


Assuntos
Micotoxinas/metabolismo , Micotoxinas/toxicidade , Animais , Bactérias/metabolismo , Disponibilidade Biológica , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Micotoxinas/farmacocinética , Medição de Risco , Testes de Toxicidade Crônica
6.
Mol Nutr Food Res ; 57(1): 165-86, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23047235

RESUMO

The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non-extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked. Fusarium mycotoxins (deoxynivalenol, zearalenone, fumonisins, nivalenol, fusarenon-X, T-2 toxin, HT-2 toxin, fusaric acid) are prone to metabolisation or binding by plants, but transformation of other mycotoxins by plants (ochratoxin A, patulin, destruxins) has also been described. Toxicological data are scarce, but several studies highlight the potential threat to consumer safety from these substances. In particular, the possible hydrolysis of masked mycotoxins back to their toxic parents during mammalian digestion raises concerns. Dedicated chapters of this article address plant metabolism as well as the occurrence of masked mycotoxins in food, analytical aspects for their determination, toxicology and their impact on stakeholders.


Assuntos
Contaminação de Alimentos , Micotoxinas/metabolismo , Plantas/metabolismo , Ração Animal/microbiologia , Ração Animal/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Fusarium/química , Humanos , Micotoxinas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...