Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 198, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37062826

RESUMO

BACKGROUND: Information on the nature and extent of genetic and genotype × environment (GE) interaction is extremely rare in wheat varieties under different sowing dates. In the present study, the GGE biplot method was conducted to investigate genotype × environment interaction effects and evaluate the adaptability and yield stability of 13 wheat varieties across eight sowing dates, in order to facilitate comparison among varieties and sowing dates and identify suitable varieties for the future breeding studies. RESULTS: Considerable genotypic variation was observed among genotypes for all of the evaluated traits, demonstrating that selection for these traits would be successful. Low broad sense heritability obtained for grain yield showed that, both genetic and non-genetic gene actions played a role in the control of this trait, and suggested that indirect selection based on its components which had high heritability and high correlation with yield, would be more effective to improve grain yield in this germplasm. Hence, selection based on an index may be more useful for improvement of this trait in recurrent selection programs. The results of the stability analysis showed that the environmental effect was a major source of variation, which captured 72.21% of total variation, whereas G and GE explained 6.94% and 18.33%, respectively. The partitioning of GGE through GGE biplot analysis showed that, the first two PCs accounted for 54.64% and 35.15% of the GGE sum of squares respectively, capturing a total of 89.79% variation. According to the GGE biplot, among the studied varieties, the performance of Gascogen was the least stable, whereas Sirvan, Roshan, and Pishtaz had superior performance under all sowing dates, suggesting that they have a broad adaptation to the diverse sowing dates. These varieties may be recommended for genetic improvement of wheat with a high degree of adaptation. CONCLUSION: The results obtained in this study demonstrated the efficiency of the GGE biplot technique for selecting high yielding and stable varieties across sowing dates.


Assuntos
Melhoramento Vegetal , Triticum , Triticum/genética , Fenótipo , Grão Comestível/genética , Genótipo
2.
PLoS One ; 18(2): e0275412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749785

RESUMO

Few prior efforts have been made to investigate the genetic potential of different subspecies of Triticum turgidum for drought tolerance and their quality-related traits compared with common wheat (Triticum aestivum) and to identify the association among agronomic, micronutrients, and quality-related traits, especially under climate change conditions. In this research, grain quality, technological properties of flour, and some agronomic traits were studied in 33 wheat genotypes from six different subspecies of Triticum turgidum along with three cultivars of Triticum aestivum in the field, applying a well-watering (WW) and a water stress (WS) environment during two growing seasons. A high degree of variation was observed among genotypes for all evaluated traits, demonstrating that selection for these traits would be successful. Consequences of water stress were manifested as declined DM, GY, and LASRC; and significantly increased GPC, K+/Na+, WAF, WSRC, SuSRC, and SCSRC compared to the well-watering condition. The reductions in the unextractable polymeric protein fraction and glutenin-to-gliadin ratio indicated a poorer grain yield quality, despite higher protein content. This study showed that the early-maturing genotypes had higher water absorption and pentosan, and therefore were more suitable for bread baking. In contrast, late-maturing genotypes are ideal for cookie and cracker production. Two subspecies of T. turgidum ssp. durum and T. turgidum ssp. dicoccum with high micronutrient densities and quality-related traits, and T. turgidum ssp. oriental due to having high values of grain protein content can be used to improve the quality of T. aestivum through cross-breeding programs. Based on the association of different traits with SRC values and other quality-related traits and PCA results, contrasting genotypes can be used to develop mapping populations for genome studies of grain quality and functional properties of flour in future studies.


Assuntos
Tetraploidia , Triticum , Triticum/genética , Secas , Desidratação , Melhoramento Vegetal , Grão Comestível/genética
3.
PLoS One ; 17(12): e0278687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477736

RESUMO

Association analysis has been proven as a powerful tool for the genetic dissection of complex traits. This study was conducted to identify association of recovery, persistence, and summer dormancy with sequence related amplified polymorphism (SRAP) markers in 36 smooth bromegrass genotypes under two moisture conditions and find stable associations. In this study, a diverse panel of polycross-derived progenies of smooth bromegrass was phenotyped under normal and water deficit regimes for three consecutive years. Under water deficit, dry matter yield of cut 1 was approximately reduced by 36, 39, and 37% during 2013, 2014, and 2015, respectively, compared with the normal regime. For dry matter yield of cut 2, these reductions were approximately 38, 60, and 56% in the same three consecutive years relative to normal regime. Moreover, water deficit decreased the RY and PER of the genotypes by 35 and 28%, respectively. Thirty primer combinations were screened by polymerase chain reaction (PCR). From these, 541 polymorphic bands were developed and subjected to association analysis using the mixed linear model (MLM). Population structure analysis identified five main subpopulations possessing significant genetic differences. Association analysis identified 69 and 46 marker-trait associations under normal and water deficit regimes, respectively. Some of these markers were associated with more than one trait; which can be attributed to pleiotropic effects or tightly linked genes affecting several traits. In normal and water-deficit regimes, these markers could potentially be incorporated into marker-assisted selection and targeted trait introgression for the improvement of drought tolerance of smooth bromegrass.


Assuntos
Bromus , Resistência à Seca
4.
PLoS One ; 17(11): e0277926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445894

RESUMO

The consequences of water deficit and its interaction with pollination system (deliberate selfing compared with open-pollination) on physiological, agronomic and phytochemical traits are not understood in fennel (Foeniculum vulgare Mill.). A research was started by creating selfed (S1) and half-sib (HS) families on a fennel germplasm in 2018. Populations were studied in the field, applying a normal and a water deficit condition during two years (2019-2020). Considerable genotypic variation was observed within S1 and HS families for all of the evaluated traits, demonstrating that selection for these traits would be successful. Consequences of water deficit were manifested as declined most of the traits; and significantly increased essential oil content, harvest index, and proline content, in both populations. Mandatory selfing reduced the performance of genotypes for most of the traits confirming the existence of inbreeding depression (ID) with higher values for plant dry weight, seed yield, essential oil content, and number of umbelets per umbel. In S1 population, some of the studied traits had higher heritability estimates under normal condition and some of them showed higher heritability under water deficit. Positive relationship between GCA and STI in OP population indicated that it is possible to identify genotypes having high values of combining ability and drought tolerance. Results of the present study suggest that physiological traits cannot be used as an indicator to distinguish drought-tolerant genotypes in S1 progenies, whereas in OP progenies Chl a, Chl b, TChl, CAR, PRO, and RWC, which had significant correlations with drought tolerance, may be used for this purpose. Based on the results contrasting genotypes were identified, which can be used to develop mapping populations for genome studies of drought tolerance and physiological traits of this species in future studies.


Assuntos
Foeniculum , Óleos Voláteis , Humanos , Foeniculum/genética , Secas , Reprodução , Água , Prolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...