Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370679

RESUMO

Mononuclear phagocytes facilitate the dissemination of the obligate intracellular parasite Toxoplasma gondii. Here, we report how a set of secreted parasite effector proteins from dense granule organelles (GRA) orchestrates dendritic cell-like chemotactic and pro-inflammatory activation of parasitized macrophages. These effects enabled efficient dissemination of the type II T. gondii lineage, a highly prevalent genotype in humans. We identify novel functions for effectors GRA15 and GRA24 in promoting CCR7-mediated macrophage chemotaxis by acting on NF-κB and p38 MAPK signaling pathways, respectively, with contributions of GRA16/18 and counter-regulation by effector TEEGR. Further, GRA28 boosted chromatin accessibility and GRA15/24/NF-κB-dependent transcription at the Ccr7 gene locus in primary macrophages. In vivo, adoptively transferred macrophages infected with wild-type T. gondii outcompeted macrophages infected with a GRA15/24 double mutant in migrating to secondary organs in mice. The data show that T. gondii, rather than being passively shuttled, actively promotes its dissemination by inducing a finely regulated pro-migratory state in parasitized human and murine phagocytes via co-operating polymorphic GRA effectors.

2.
mBio ; 15(3): e0330223, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38376248

RESUMO

Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model." However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.IMPORTANCEEffector-triggered immunity represents an innate immune defense mechanism that plays a crucial role in sensing and controlling intracellular pathogen infection. The NLRP1 inflammasome in the Lewis rats can detect Toxoplasma infection, which triggers proptosis in infected macrophages and eliminates the parasite's replication niche. The work reported here revealed that host E3 ubiquitin ligase ITCH is able to recognize and interact with Toxoplasma effector protein GRA35 localized on the parasite-host interface, leading to NLRP1 inflammasome activation in Lewis rat macrophages. Furthermore, ITCH-GRA35 interaction contributes to the restriction of Toxoplasma in human fibroblasts stimulated by IFNγ. Thus, this research provides valuable insights into understanding pathogen recognition and restriction mediated by host E3 ubiquitin ligase.


Assuntos
Toxoplasma , Animais , Humanos , Ratos , Adenosina Trifosfatases , Imunidade Inata , Inflamassomos , Proteínas NLR , Proteínas de Protozoários/metabolismo , Ratos Endogâmicos Lew , Toxoplasma/metabolismo , Ubiquitina-Proteína Ligases
3.
mBio ; 15(3): e0308123, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38380952

RESUMO

Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins secreted from dense granule organelles to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions, we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant "bubble vacuole" morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections. IMPORTANCE: Toxoplasma gondii is a parasite that poses significant health risks to those with impaired immunity. It replicates inside host cells shielded by the PVM, which controls nutrient and waste exchange with the host. GRA72, previously identified as essential in the absence of the GRA17 nutrient channel, is implicated in forming an alternative nutrient channel. Here we found that GRA47 associates with GRA72 and is also important for the PVM's permeability to small molecules. Removal of GRA47 leads to distorted vacuoles and impairs small molecule transport across the PVM, resembling the effects of GRA17 and GRA72 deletions. Structural models suggest GRA47 and GRA72 form distinct pore structures, with a pore-lining histidine critical to their function. Toxoplasma strains lacking GRA47 or those with a histidine mutation have impaired growth and reduced virulence in mice, highlighting these proteins as potential targets for new treatments against toxoplasmosis.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/genética , Vacúolos/metabolismo , Proteínas de Protozoários/genética , Histidina/metabolismo , Permeabilidade
4.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014337

RESUMO

Toxoplasma gondii, a medically important intracellular parasite, uses GRA proteins, secreted from dense granule organelles, to mediate nutrient flux across the parasitophorous vacuole membrane (PVM). GRA17 and GRA23 are known pore-forming proteins on the PVM involved in this process, but the roles of additional proteins have remained largely uncharacterized. We recently identified GRA72 as synthetically lethal with GRA17. Deleting GRA72 produced similar phenotypes to Δgra17 parasites, and computational predictions suggested it forms a pore. To understand how GRA72 functions we performed immunoprecipitation experiments and identified GRA47 as an interactor of GRA72. Deletion of GRA47 resulted in an aberrant 'bubble vacuole' morphology with reduced small molecule permeability, mirroring the phenotype observed in GRA17 and GRA72 knockouts. Structural predictions indicated that GRA47 and GRA72 form heptameric and hexameric pores, respectively, with conserved histidine residues lining the pore. Mutational analysis highlighted the critical role of these histidines for protein functionality. Validation through electrophysiology confirmed alterations in membrane conductance, corroborating their pore-forming capabilities. Furthermore, Δgra47 parasites and parasites expressing GRA47 with a histidine mutation had reduced in vitro proliferation and attenuated virulence in mice. Our findings show the important roles of GRA47 and GRA72 in regulating PVM permeability, thereby expanding the repertoire of potential therapeutic targets against Toxoplasma infections.

5.
PLoS Pathog ; 19(7): e1011543, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498952

RESUMO

Toxoplasma gondii is a parasite that replicates within a specialized compartment called the parasitophorous vacuole (PV), which is surrounded by the PV membrane (PVM). To obtain essential nutrients, Toxoplasma must transport molecules across the PVM, a process mediated by the secreted parasite proteins GRA17 and GRA23. These proteins form pores in the PVM through which small molecules can diffuse in and out of the PV. GRA17 and GRA23 are synthetically lethal, suggesting that at least one pore type is essential for parasite survival. In the 'nutrient sensitized' Δgra17 strain it is likely that other Toxoplasma genes become essential, because they mediate nutrient acquisition from the host or are involved in the trafficking of GRA23 to the PVM. To identify these genes, a genome-wide loss-of-function screen was performed in wild-type and Δgra17 parasites, which identified multiple genes that were synthetically sick/lethal with GRA17. Several of these genes were involved in the correct localization of GRAs, including GRA17/GRA23, to the PVM. One of the top hits, GRA72, was predicted to form a pore on the PVM, and its deletion led to the formation of enlarged "bubble vacuoles" with reduced PVM small molecule permeability, similar to what was previously observed for Δgra17 parasites. Furthermore, Δgra72 parasites had reduced in vitro growth and virulence in mice. These findings suggest that in the absence of GRA17, other genes become essential, likely because they play a role in the proper localization of GRA23 (and other GRAs) or because they determine host-derived nutrient acquisition at the PVM.


Assuntos
Toxoplasma , Animais , Camundongos , Toxoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Vacúolos/metabolismo , Nutrientes
6.
Vet Parasitol Reg Stud Reports ; 39: 100841, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36878626

RESUMO

An adult Indian ringneck parakeet (Psittacula krameri manillensis) from an outdoor aviary in Sacramento, California was found dead on the nest box. Postmortem examination showed firm, enlarged, yellow­tinged liver and splenomegaly. Multifocal to coalescing, acute necrosis with macrophages, lymphocytes, plasma cells, and periportal ductular reaction were seen on liver histology with extra- and intracellular schizonts and merozoites. A few schizonts and lymphohistiocytic inflammation were seen in the spleen. Toxoplasma gondii, Sarcocystis neurona, S. falcatula and Neospora caninum were ruled out by immunohistochemistry. PCR of the liver for Sarcocystis spp. Based on the positive amplification/PCR of ITS1 segment and sequencing of 28S rRNA fragment, S. calchasi was confirmed. The splanchnic presentation of S. calchasi in this parakeet resembles the acute infection described experimentally in domestic pigeons (Columba livia f. domestica) and cockatiels (Nymphicus hollandicus). Since large populations of red-tailed hawks (Buteo jamaicensis) and Cooper's hawk (Accipiter cooperi), the likely definitive hosts of S. calchasi in North America, inhabit the Sacramento area, their presence near outdoor aviaries may account for the source of S. calchasi infective sporocysts.


Assuntos
Hepatite , Psittacula , Sarcocystis , Animais , Columbidae , Periquitos
7.
mBio ; 14(2): e0006023, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36916910

RESUMO

Toxoplasma virulence depends on its ability to evade or survive the toxoplasmacidal mechanisms induced by interferon gamma (IFNγ). While many Toxoplasma genes involved in the evasion of the murine IFNγ response have been identified, genes required to survive the human IFNγ response are largely unknown. In this study, we used a genome-wide loss-of-function screen to identify Toxoplasma genes important for parasite fitness in IFNγ-stimulated primary human fibroblasts. We generated gene knockouts for the top six hits from the screen and confirmed their importance for parasite growth in IFNγ-stimulated human fibroblasts. Of these six genes, three have homology to GRA32, localize to dense granules, and coimmunoprecipitate with each other and GRA32, suggesting they might form a complex. Deletion of individual members of this complex leads to early parasite egress in IFNγ-stimulated cells. Thus, prevention of early egress is an important Toxoplasma fitness determinant in IFNγ-stimulated human cells. IMPORTANCE Toxoplasma infection causes serious complications in immunocompromised individuals and in the developing fetus. During infection, certain immune cells release a protein called interferon gamma that activates cells to destroy the parasite or inhibit its growth. While most Toxoplasma parasites are cleared by this immune response, some can survive by blocking or evading the IFNγ-induced restrictive environment. Many Toxoplasma genes that determine parasite survival in IFNγ-activated murine cells are known but parasite genes conferring fitness in IFNγ-activated human cells are largely unknown. Using a Toxoplasma adapted genome-wide loss-of-function screen, we identified many Toxoplasma genes that determine parasite fitness in IFNγ-activated human cells. The gene products of four top hits play a role in preventing early parasite egress in IFNγ-stimulated human cells. Understanding how IFNγ-stimulated human cells inhibit Toxoplasma growth and how Toxoplasma counteracts this, could lead to the development of novel therapeutics.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Camundongos , Parasitos/genética , Interferon gama/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Virulência , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
8.
mBio ; 14(2): e0286822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36809045

RESUMO

Toxoplasma gondii oocysts, which are shed in large quantities in the feces from infected felines, are very stable in the environment, resistant to most inactivation procedures, and highly infectious. The oocyst wall provides an important physical barrier for sporozoites contained inside oocysts, protecting them from many chemical and physical stressors, including most inactivation procedures. Furthermore, sporozoites can withstand large temperature changes, even freeze-thawing, as well as desiccation, high salinity, and other environmental insults; however, the genetic basis for this environmental resistance is unknown. Here, we show that a cluster of four genes encoding Late Embryogenesis Abundant (LEA)-related proteins are required to provide Toxoplasma sporozoites resistance to environmental stresses. Toxoplasma LEA-like genes (TgLEAs) exhibit the characteristic features of intrinsically disordered proteins, explaining some of their properties. Our in vitro biochemical experiments using recombinant TgLEA proteins show that they have cryoprotective effects on the oocyst-resident lactate dehydrogenase enzyme and that induced expression in E. coli of two of them leads to better survival after cold stress. Oocysts from a strain in which the four LEA genes were knocked out en bloc were significantly more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts. We discuss the evolutionary acquisition of LEA-like genes in Toxoplasma and other oocyst-producing apicomplexan parasites of the Sarcocystidae family and discuss how this has likely contributed to the ability of sporozoites within oocysts to survive outside the host for extended periods. Collectively, our data provide a first molecular detailed view on a mechanism that contributes to the remarkable resilience of oocysts against environmental stresses. IMPORTANCE Toxoplasma gondii oocysts are highly infectious and may survive in the environment for years. Their resistance against disinfectants and irradiation has been attributed to the oocyst and sporocyst walls by acting as physical and permeability barriers. However, the genetic basis for their resistance against stressors like changes in temperature, salinity, or humidity, is unknown. We show that a cluster of four genes encoding Toxoplasma Late Embryogenesis Abundant (TgLEA)-related proteins are important for this resistance to environmental stresses. TgLEAs have features of intrinsically disordered proteins, explaining some of their properties. Recombinant TgLEA proteins show cryoprotective effects on the parasite's lactate dehydrogenase, an abundant enzyme in oocysts, and expression in E. coli of two TgLEAs has a beneficial effect on growth after cold stress. Moreover, oocysts from a strain lacking all four TgLEA genes were more susceptible to high salinity, freezing, and desiccation compared to wild-type oocysts, highlighting the importance of the four TgLEAs for oocyst resilience.


Assuntos
Proteínas Intrinsicamente Desordenadas , Toxoplasma , Animais , Gatos , Toxoplasma/metabolismo , Oocistos/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Crioprotetores/metabolismo , Escherichia coli/genética , Esporozoítos/metabolismo , Lactato Desidrogenases/metabolismo
9.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168400

RESUMO

Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the "NLRP1 functional degradation model". However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH's role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.

10.
Cell Host Microbe ; 30(11): 1570-1588.e7, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36309013

RESUMO

Upon pathogen detection, macrophages normally stay sessile in tissues while dendritic cells (DCs) migrate to secondary lymphoid tissues. The obligate intracellular protozoan Toxoplasma gondii exploits the trafficking of mononuclear phagocytes for dissemination via unclear mechanisms. We report that, upon T. gondii infection, macrophages initiate the expression of transcription factors normally attributed to DCs, upregulate CCR7 expression with a chemotactic response, and perform systemic migration when adoptively transferred into mice. We show that parasite effector GRA28, released by the MYR1 secretory pathway, cooperates with host chromatin remodelers in the host cell nucleus to drive the chemotactic migration of parasitized macrophages. During in vivo challenge studies, bone marrow-derived macrophages infected with wild-type T. gondii outcompeted those challenged with MYR1- or GRA28-deficient strains in migrating and reaching secondary organs. This work reveals how an intracellular parasite hijacks chemotaxis in phagocytes and highlights a remarkable migratory plasticity in differentiated cells of the mononuclear phagocyte system.


Assuntos
Parasitos , Toxoplasma , Camundongos , Animais , Toxoplasma/fisiologia , Células Dendríticas/fisiologia , Movimento Celular , Macrófagos
11.
Pathogens ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36145430

RESUMO

The intraspecific variability among Neospora caninum isolates in their in vitro behaviour and in vivo virulence has been widely studied. In particular, transcriptomic and proteomic analyses have shown a higher expression/abundance of specific genes/proteins in high-virulence isolates. Consequently, the dense granule protein NcGRA7 and the rhoptry protein NcROP40 were proposed as potential virulence factors. The objective of this study was to characterize the role of these proteins using CRISPR/Cas9 knockout (KO) parasites in a well-established pregnant BALB/c mouse model of N. caninum infection at midgestation. The deletion of NcGRA7 and NcROP40 was associated with a reduction of virulence, as infected dams displayed milder clinical signs, lower parasite burdens in the brain, and reduced mortality rates compared to those infected with the wild-type parasite (Nc-Spain7). Specifically, those infected with the NcGRA7 KO parasites displayed significantly milder clinical signs and a lower brain parasite burden. The median survival time of the pups from dams infected with the two KO parasites was significantly increased, but differences in neonatal mortality rates were not detected. Overall, the present study indicates that the disruption of NcGRA7 considerably impairs virulence in mice, while the impact of NcROP40 deletion was more modest. Further research is needed to understand the role of these virulence factors during N. caninum infection.

12.
Front Immunol ; 13: 950914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990682

RESUMO

The obligate intracellular parasite Toxoplasma gondii makes use of infected leukocytes for systemic dissemination. Yet, how infection impacts the processes of leukocyte diapedesis has remained unresolved. Here, we addressed the effects of T. gondii infection on the trans-endothelial migration (TEM) of dendritic cells (DCs) across polarised brain endothelial monolayers. We report that upregulated expression of leukocyte ICAM-1 is a feature of the enhanced TEM of parasitised DCs. The secreted parasite effector GRA15 induced an elevated expression of ICAM-1 in infected DCs that was associated with enhanced cell adhesion and TEM. Consequently, gene silencing of Icam-1 in primary DCs or deletion of parasite GRA15 reduced TEM. Further, the parasite effector TgWIP, which impacts the regulation of host actin dynamics, facilitated TEM across polarised endothelium. The data highlight that the concerted action of the secreted effectors GRA15 and TgWIP modulate the leukocyte-endothelial interactions of TEM in a parasite genotype-related fashion to promote dissemination. In addition to the canonical roles of endothelial ICAM-1, this study identifies a previously unappreciated role for leukocyte ICAM-1 in infection-related TEM.


Assuntos
Toxoplasma , Células Dendríticas/metabolismo , Endotélio/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Migração Transendotelial e Transepitelial
13.
Front Immunol ; 13: 910961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734184

RESUMO

Toxoplasmosis is a worldwide disease affecting all warm-blooded animals, including humans. Vaccination strategies aimed at inducing an efficient immune response while preventing transmission have been attempted in the past. While many different approaches can partially protect immunized animals against subsequent infections, full and lasting protection is rarely attained and only with live-attenuated vaccines. In addition, vaccines based on mutant strains that are deficient in forming the chronic phase of the parasite (such as Toxovax™) cannot be extensively used due to their zoonotic potential and the possibility of reversion to virulent phenotypes. An increasing number of studies using emerging genetic-engineering tools have been conducted to design novel vaccines based on recombinant proteins, DNA or delivery systems such as nanoparticles. However, these are usually less efficient due to their antigenic simplicity. In this perspective article we discuss potential target genes and novel strategies to generate live-attenuated long-lasting vaccines based on tissue cysts and oocysts, which are the environmentally resistant chronic forms of Toxoplasma. By selectively disrupting genes important for parasite dissemination, cyst formation and/or sporozoite invasion, alone or in combination, a vaccine based on a live-attenuated strain that elicits a protective immune response while preventing the transmission of Toxoplasma could be created. Finally, further improvements of protocols to generate Toxoplasma sexual stages in vitro might lead to the production of oocysts from such a strain without the need for using mice or cats.


Assuntos
Cistos , Vacinas Protozoárias , Toxoplasma , Toxoplasmose Animal , Animais , Camundongos , Oocistos , Vacinas Atenuadas
14.
Int J Parasitol Parasites Wildl ; 17: 91-99, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35004169

RESUMO

Outbreaks of neurological disease associated with Sarcocystis calchasi have been observed in captive and free-ranging rock pigeons (Columba livia) in Europe and the United States as well as in wild Brandt's cormorants (Phalacrocorax penicillatus) and captive psittacines in California, USA. Experimental and field studies have identified northern goshawks (Accipiter gentilis) and European sparrowhawks (A. nisus) as definitive hosts in Europe while the definitive hosts elsewhere remain unknown. In this study, we aimed to identify the potential definitive host(s) of S. calchasi through molecular analysis of intestinal samples from seven predatory (n = 85) and one omnivorous (n = 11) bird species in California. In total, apicomplexan-generic 28S rRNA PCR products were obtained and sequenced for 42 raptors. Three of 16 (18.8%) Cooper's hawks (A. cooperii) and two of 26 (5.6%) red-tailed hawks (Buteo jamaicensis) also tested positive for the S. calchasi-specific ITS1 PCR and sequencing of the 28S rRNA PCR product was 100% homologous to S. calchasi. In addition to S. calchasi (5.9%; 5/85), other Sarcocystis spp. detected in raptors included: S. jamaicensis (21.2%; 18/85), S. columbae (8.2%; 7/85), S. turdusi (7.1%; 6/85), and S. halieti (4.7; 4/85%). Infections with closely related S. jamaicensis and S. (Frenkelia) microti (9.4%; 8/85) could not be distinguished for eight raptors. Eumonospora henryae (1.2%; 1/85) was detected in one raptor. Our results indicate for the first time that S. calchasi may have a definitive host range in North America that includes at least two raptors, Cooper's hawks and red-tailed hawks, within the family Accipitridae.

15.
mBio ; 12(3): e0133121, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154412

RESUMO

Toxoplasmic encephalitis can develop in individuals infected with the protozoan parasite Toxoplasma gondii and is typified by parasite replication and inflammation within the brain. Patients often present with seizures, but the parasite genes and host pathways involved in seizure development and/or propagation are unknown. We previously reported that seizure induction in Toxoplasma-infected mice is parasite strain dependent. Using quantitative trait locus mapping, we identify four loci in the Toxoplasma genome that potentially correlate with seizure development. In one locus, we identify the polymorphic virulence factor, GRA15, as a Toxoplasma gene associated with onset of seizures. GRA15 was previously shown to regulate host NF-κB-dependent gene expression during acute infections, and we demonstrate a similar role for GRA15 in brains of toxoplasmic encephalitic mice. GRA15 is important for increased expression of interleukin 1 beta (IL-1ß) and other IL-1 pathway host genes, which is significant since IL-1 signaling is involved in onset of seizures. Inhibiting IL-1 receptor signaling reduced seizure severity in Toxoplasma-infected mice. These data reveal one mechanism by which seizures are induced during toxoplasmic encephalitis. IMPORTANCE Inflammation in the brain caused by infections lead to seizures and other neurological symptoms. But the microbial products that induce seizures as well as the host pathways downstream of these factors are largely unknown. Using a nonbiased genetic screening approach, we identify 4 loci in the Toxoplasma genome that correlate with the induction of seizures in Toxoplasma-infected mice. One of these loci contains the gene, GRA15, which we demonstrate is associated with seizure development in toxoplasmic encephalitic mice. GRA15 accomplishes this in part by activating host pathways that lead to increased IL-1 receptor signaling and that inhibition of this signaling inhibits Toxoplasma-induced seizures.


Assuntos
Encéfalo/imunologia , Interações Hospedeiro-Parasita/imunologia , Interleucina-1beta/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Transdução de Sinais/imunologia , Toxoplasma/genética , Animais , Encéfalo/parasitologia , Encéfalo/patologia , Feminino , Expressão Gênica , Genoma de Protozoário , Humanos , Interleucina-1beta/genética , Camundongos , Camundongos Endogâmicos C57BL , Convulsões/imunologia , Convulsões/parasitologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Toxoplasmose Animal/parasitologia , Fatores de Virulência
16.
STAR Protoc ; 2(2): 100520, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34013213

RESUMO

The virulence of eukaryotic parasites like Toxoplasma gondii depends on their capacity to escape from the host immune response and disseminate throughout the host organism. However, Toxoplasma gene products essential for its in vivo pathogenesis remain uncharacterized. Here, we present the complete workflow of a CRISPR-Cas9 in vivo loss-of-function screen to identify Toxoplasma fitness-conferring genes. This protocol can be used to uncover gene products that play a role in Toxoplasma immune evasion, nutrient acquisition, dissemination, and tissue colonization. For complete details on the use and execution of this protocol, please refer to Sangaré et al. (2019).


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas Genéticas , Toxoplasma , Virulência/genética , Animais , Feminino , Mutação com Perda de Função/genética , Camundongos , Toxoplasma/genética , Toxoplasma/patogenicidade , Toxoplasma/fisiologia , Toxoplasmose/parasitologia
17.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006649

RESUMO

Our studies on novel cyst wall proteins serendipitously led us to the discovery that cyst wall and vacuolar matrix protein MAG1, first identified a quarter of a century ago, functions as a secreted immunomodulatory effector. MAG1 is a dense granular protein that is found in the parasitophorous vacuolar matrix in tachyzoite vacuoles and the cyst wall and matrix in bradyzoite vacuoles. In the current study, we demonstrated that MAG1 is secreted beyond the parasitophorous vacuole into the host cytosol in both tachyzoites and bradyzoites. Secretion of MAG1 gradually decreases as the parasitophorous vacuole matures, but prominent MAG1 puncta are present inside host cells even at 4 and 6 days following infection. During acute murine infection, Δmag1 parasites displayed significantly reduced virulence and dissemination. In the chronic stage of infection, Δmag1 parasites generated almost no brain cysts. To identify the mechanism behind the attenuated pathology seen with Δmag1 parasites, various immune responses were screened in vitro using bone marrow-derived macrophages (BMDM). Infection of BMDM with Δmag1 parasites induced a significant increase in interleukin 1ß (IL-1ß) secretion, which is a hallmark of inflammasome activation. Heterologous complementation of MAG1 in BMDM cells prevented this Δmag1 parasite-induced IL-1ß release, indicating that secreted MAG1 in host cytosol dampens inflammasome activation. Furthermore, knocking out GRA15 (an inducer of IL-1ß release) in Δmag1 parasites completely inhibited all IL-1ß release by host cells following infection. These data suggest that MAG1 has a role as an immunomodulatory molecule and that by suppressing inflammasome activation, it would favor survival of the parasite and the establishment of latent infection.IMPORTANCEToxoplasma gondii is an Apicomplexan that infects a third of humans, causing encephalitis in AIDS patients and intellectual disabilities in congenitally infected patients. We determined that one of the cyst matrix proteins, MAG1, which had been thought to be an innate structural protein, can be secreted into the host cell and suppress the host immune reaction. This particular immune reaction is initiated by another parasite-secreted protein, GRA15. The intricate balance of inflammasome activation by GRA15 and suppression by MAG1 protects mice from acute death while enabling parasites to disseminate and establish chronic cysts. Our finding contributes to our understanding of how parasites persist in the host and how T. gondii modulates the host immune system.


Assuntos
Antígenos de Protozoários/imunologia , Citosol/química , Fatores Imunológicos/imunologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Antígenos de Protozoários/análise , Antígenos de Protozoários/biossíntese , Antígenos de Protozoários/genética , Células Cultivadas , Citosol/metabolismo , Feminino , Humanos , Fatores Imunológicos/genética , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/genética , Toxoplasma/química , Toxoplasma/genética , Toxoplasmose/parasitologia
18.
Front Cell Infect Microbiol ; 11: 621738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33680990

RESUMO

The severity of toxoplasmosis depends on a combination of host and parasite factors. Among them, the Toxoplasma strain causing the infection is an important determinant of the disease outcome. Type 2 strains dominate in Europe, whereas in North America type 2, followed by type 3 and 12 strains are commonly isolated from wildlife and patients. To identify the strain type a person is infected with, serological typing provides a promising alternative to the often risky and not always possible biopsy-based DNA methods of genotyping. However, despite recent advances in serotyping, improvements in the sensitivity and specificity are still needed, and it does not yet discriminate among the major Toxoplasma lineages infecting people. Moreover, since infections caused by non-1/2/3 strains have been associated with more severe disease, the ability to identify these is critical. In the present study we investigated the diagnostic potential of an ELISA-based assay using 28 immunogenic Toxoplasma peptides derived from a recent large-scale peptide array screen. Our results show that a discrete number of peptides, derived from Toxoplasma dense granule proteins (GRA3, GRA5, GRA6, and GRA7) was sufficient to discriminate among archetypal strains that infect mice and humans. The assay specifically relies on ratios that compare individual serum reactivities against GRA-specific polymorphic peptide variants in order to determine a "reactivity fingerprint" for each of the major strains. Importantly, nonarchetypal strains that possess a unique combination of alleles, different from types 1/2/3, showed either a non-reactive, or different combinatorial, mixed serum reactivity signature that was diagnostic in its own right, and that can be used to identify these strains. Of note, we identified a distinct "HG11/12" reactivity pattern using the GRA6 peptides that is able to distinguish HG11/12 from archetypal North American/European strain infections.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Antígenos de Protozoários/genética , Europa (Continente) , Humanos , Camundongos , América do Norte , Peptídeos , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/diagnóstico
19.
Front Cell Infect Microbiol ; 10: 580425, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178630

RESUMO

Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Humanos , Imunidade , Fatores de Virulência/genética
20.
Nat Commun ; 11(1): 5258, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067458

RESUMO

Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages.


Assuntos
Interferon gama/imunologia , Macrófagos/imunologia , Toxoplasma/genética , Toxoplasmose/imunologia , Animais , Feminino , Genoma de Protozoário , Interações Hospedeiro-Parasita , Humanos , Interferon gama/genética , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/genética , Toxoplasmose/parasitologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...