Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Total Environ ; 716: 136610, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31982187

RESUMO

Ocean acidification (OA) along the US West Coast is intensifying faster than observed in the global ocean. This is particularly true in nearshore regions (<200 m) that experience a lower buffering capacity while at the same time providing important habitats for ecologically and economically significant species. While the literature on the effects of OA from laboratory experiments is voluminous, there is little understanding of present-day OA in-situ effects on marine life. Dungeness crab (Metacarcinus magister) is perennially one of the most valuable commercial and recreational fisheries. We focused on establishing OA-related vulnerability of larval crustacean based on mineralogical and elemental carapace to external and internal carapace dissolution by using a combination of different methods ranging from scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping and X-ray diffraction. By integrating carapace features with the chemical observations and biogeochemical model hindcast, we identify the occurrence of external carapace dissolution related to the steepest Ω calcite gradients (∆Ωcal,60) in the water column. Dissolution features are observed across the carapace, pereopods (legs), and around the calcified areas surrounding neuritic canals of mechanoreceptors. The carapace dissolution is the most extensive in the coastal habitats under prolonged (1-month) long exposure, as demonstrated by the use of the model hindcast. Such dissolution has a potential to destabilize mechanoreceptors with important sensory and behavioral functions, a pathway of sensitivity to OA. Carapace dissolution is negatively related to crab larval width, demonstrating a basis for energetic trade-offs. Using a retrospective prediction from a regression models, we estimate an 8.3% increase in external carapace dissolution over the last two decades and identified a set of affected OA-related sublethal pathways to inform future risk assessment studies of Dungeness crabs.


Assuntos
Braquiúros , Animais , Concentração de Íons de Hidrogênio , Larva , Mecanorreceptores , Estudos Retrospectivos , Água do Mar , Solubilidade
2.
Rapid Commun Mass Spectrom ; 30(24): 2607-2616, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27650267

RESUMO

RATIONALE: The clumped isotope composition of CO2 (Δ47 ) derived from carbonate is widely used as a paleotemperature proxy with broad applications in geoscience. Its accuracy is, however, limited by inter-laboratory discrepancies of reference materials and disagreement among carbonate geothermometer calibrations. Here we show how the correction for the abundance of 17 O influences these discrepancies. METHODS: We used CO2 -H2 O equilibration at known temperatures and phosphoric acid digested carbonates to generate CO2 samples with a wide range in 13 C and 18 O compositions. All samples were purified using an offline vacuum line. We used a Thermo MAT 253 isotope ratio mass spectrometer with a Faraday collector array for m/z 44-49, to measure δ13 C, δ18 O, δ47 , and Δ47 values. Data were compiled using a traditional correction ('Santrock') for the 17 O interference in m/z 45 as well as a more recently proposed correction ('Brand') for 17 O interference. Two reference frames using CO2 with distinct 13 C compositions were constructed to simulate an inter-laboratory comparison. RESULTS: The traditional Santrock 17 O correction leads to a simulated Δ47 inter-laboratory comparison offset of 0.06 ‰, and a 0.1 ‰ Δ47 range in CO2 -H2 O 23°C equilibrations that is dependent on the 13 C composition. The more recent Brand 17 O correction removes these discrepancies. The traditional 17 O correction yields distinct temperature-Δ47 calibration curves for synthetic carbonates precipitated using different methods to degas CO2 , while the more recent 17 O correction collapses all calibration data onto a single curve. CONCLUSIONS: The 17 O correction strategy employed by CO2 and carbonate clumped-isotope researchers can have a large effect on the accuracy of Δ47 values. Use of the traditional 17 O correction may have caused errors in published studies as large as 0.1 ‰ and may account for Δ47 differences among laboratories and disagreement among previously published carbonate clumped isotope thermometry calibrations. Copyright © 2016 John Wiley & Sons, Ltd.

3.
Saline Syst ; 2: 8, 2006 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-16817958

RESUMO

The equatorial Pacific Ocean atoll islands of Kiritimati and Teraina encompass great physical, chemical and biological variability within extreme lacustrine environments. Surveys of lake chemistry and sediments revealed both intra- and inter-island variability. A survey of more than 100 lakes on Kiritimati found salinities from nearly fresh to 150 ppt with the highest values occurring within the isolated, inland portions of the island away from the influence of groundwater or extreme tides. Dissolved oxygen (DO) and pH values also showed considerable variability with a less regular spatial pattern, but were both generally inversely related to salinity. Series of lakes, progressively more isolated from marine communication, present a modern analog to the chemical and morphologic evolution of presently isolated basins. Sediments on both islands consist of interbedded red and green silt, possibly degraded bacterial mat, overlying white, mineralogenic silt precipitate. Variability may be indicative of shifts in climatological parameters such as the El Niño Southern Oscillation (ENSO) or the Pacific Intertropical Convergence Zone (ITCZ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...