Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(10): e0205589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30304024

RESUMO

Spinal muscular atrophy (SMA) is a severe genetic disorder that manifests in progressive neuromuscular degeneration. SMA originates from loss-of-function mutations of the SMN1 (Survival of Motor Neuron 1) gene. Recent evidence has implicated peripheral deficits, especially in skeletal muscle, as key contributors to disease progression in SMA. In this study we generated myogenic cells from two SMA-affected human embryonic stem cell (hESC) lines with deletion of SMN1 bearing two copies of the SMN2 gene and recapitulating the molecular phenotype of Type 1 SMA. We characterized myoblasts and myotubes by comparing them to two unaffected, control hESC lines and demonstrate that SMA myoblasts and myotubes showed altered expression of various myogenic markers, which translated into an impaired in vitro myogenic maturation and development process. Additionally, we provide evidence that these SMN1 deficient cells display functional deficits in cholinergic calcium signaling response, glycolysis and oxidative phosphorylation. Our data describe a novel human myogenic SMA model that might be used for interrogating the effect of SMN depletion during skeletal muscle development, and as model to investigate biological mechanisms targeting myogenic differentiation, mitochondrial respiration and calcium signaling processes in SMA muscle cells.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular Espinal/metabolismo , Mioblastos/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Linhagem Celular , Expressão Gênica , Células-Tronco Embrionárias Humanas/patologia , Humanos , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Mioblastos/patologia , Receptores Colinérgicos/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
2.
Restor Neurol Neurosci ; 36(4): 559-569, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889090

RESUMO

BACKGROUND: Traumatic brain injury can result in lasting cognitive dysfunction due to degeneration of mature hippocampal neurons as well as the loss of immature neurons within the dentate gyrus. While endogenous neurogenesis affords a partial recovery of the immature neuron population, hippocampal neurogenesis may be enhanced through therapeutic intervention. Insulin-like growth factor-1 (IGF-1) has the potential to improve cognitive function and promote neurogenesis after TBI, but its short half-life in the systemic circulation makes it difficult to maintain a therapeutic concentration. IGF-1 modified with a polyethylene glycol moiety (PEG-IGF-1) exhibits improved stability and half-life while retaining its ability to enter the brain from the periphery, increasing its viability as a translational approach. OBJECTIVE: The goal of this study was to evaluate the ability of systemic PEG-IGF-1 administration to attenuate acute neuronal loss and stimulate the recovery of hippocampal immature neurons in brain-injured mice. METHODS: In a series of studies utilizing a well-established contusion brain injury model, PEG-IGF-1 was administered subcutaneously after injury. Serum levels of PEG were verified using ELISA and histological staining was used to investigate numbers of degenerating neurons and cortical contusion size at 24 h after injury. Immunofluorescent staining was used to evaluate numbers of immature neurons at 10 d after injury. RESULTS: Although subcutaneous injections of PEG-IGF-1 increased serum IGF-1 levels in a dose-dependent manner, no effects were observed on cortical contusion size, neurodegeneration within the dentate gyrus, or recovery of hippocampal immature neuron numbers. CONCLUSIONS: In contrast to its efficacy in rodent models of neurodegenerative diseases, PEG- IGF-1 was not effective in ameliorating early neuronal loss after contusion brain trauma.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Fator de Crescimento Insulin-Like I/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Polietilenoglicóis/uso terapêutico , Análise de Variância , Animais , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteínas do Domínio Duplacortina , Fluoresceínas/farmacocinética , Lateralidade Funcional , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/metabolismo
3.
Sci Rep ; 7(1): 241, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325900

RESUMO

Insulin-like growth factor-I (IGF-I) is involved in the maturation and maintenance of neurons, and impaired IGF-I signaling has been shown to play a role in various neurological diseases including stroke. The aim of the present study was to investigate the efficacy of an optimized IGF-I variant by adding a 40 kDa polyethylene glycol (PEG) chain to IGF-I to form PEG-IGF-I. We show that PEG-IGF-I has a slower clearance which allows for twice-weekly dosing to maintain steady-state serum levels in mice. Using a photothrombotic model of focal stroke, dosing from 3 hrs post-stroke dose-dependently (0.3-1 mg/kg) decreases the volume of infarction and improves motor behavioural function in both young 3-month and aged 22-24 month old mice. Further, PEG-IGF-I treatment increases GFAP expression when given early (3 hrs post-stroke), increases Synaptophysin expression and increases neurogenesis in young and aged. Finally, neurons (P5-6) cultured in vitro on reactive astrocytes in the presence of PEG-IGF-I showed an increase in neurite length, indicating that PEG-IGF-I can aid in sprouting of new connections. This data suggests a modulatory role of IGF-I in both protective and regenerative processes, and indicates that therapeutic approaches using PEG-IGF-I should be given early and where the endogenous regenerative potential is still high.


Assuntos
Fator de Crescimento Insulin-Like I/administração & dosagem , Isquemia/terapia , Acidente Vascular Cerebral/terapia , Animais , Modelos Animais de Doenças , Fator de Crescimento Insulin-Like I/farmacocinética , Locomoção , Camundongos , Soro/química , Resultado do Tratamento
4.
Brain ; 137(Pt 5): 1374-93, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681663

RESUMO

Spinal muscular atrophy with respiratory distress type 1 is a neuromuscular disorder characterized by progressive weakness and atrophy of the diaphragm and skeletal muscles, leading to death in childhood. No effective treatment is available. The neuromuscular degeneration (Nmd(2J)) mouse shares a crucial mutation in the immunoglobulin mu-binding protein 2 gene (Ighmbp2) with spinal muscular atrophy with respiratory distress type 1 patients and also displays some basic features of the human disease. This model serves as a promising tool in understanding the complex mechanisms of the disease and in exploring novel treatment modalities such as insulin-like growth factor 1 (IGF1) which supports myogenic and neurogenic survival and stimulates differentiation during development. Here we investigated the treatment effects with polyethylene glycol-coupled IGF1 and its mechanisms of action in neurons and muscles. Polyethylene glycol-coupled IGF1 was applied subcutaneously every second day from post-natal Day 14 to post-natal Day 42 and the outcome was assessed by morphology, electromyography, and molecular studies. We found reduced IGF1 serum levels in Nmd(2J) mice 2 weeks after birth, which was normalized by polyethylene glycol-coupled IGF1 treatment. Nmd(2J) mice showed marked neurogenic muscle fibre atrophy in the gastrocnemius muscle and polyethylene glycol-coupled IGF1 treatment resulted in muscle fibre hypertrophy and slowed fibre degeneration along with significantly higher numbers of functionally active axonal sprouts. In the diaphragm with predominant myogenic changes a profound protection from muscle fibre degeneration was observed under treatment. No effects of polyethylene glycol-coupled IGF1 were monitored at the level of motor neuron survival. The beneficial effects of polyethylene glycol-coupled IGF1 corresponded to a marked activation of the IGF1 receptor, resulting in enhanced phosphorylation of Akt (protein kinase B) and the ribosomal protein S6 kinase in striated muscles and spinal cord from Nmd(2J) mice. Based on these findings, polyethylene glycol-coupled IGF1 may hold promise as a candidate for future treatment trials in human patients with spinal muscular atrophy with respiratory distress type 1.


Assuntos
Fator de Crescimento Insulin-Like I/uso terapêutico , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/etiologia , Atrofia Muscular Espinal/complicações , Polietilenoglicóis/uso terapêutico , Fatores Etários , Animais , Células Cultivadas , Fator Neurotrófico Ciliar/farmacologia , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Força Muscular/efeitos dos fármacos , Força Muscular/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Miocárdio/patologia , Receptor IGF Tipo 1/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética
5.
Biochim Biophys Acta ; 1830(10): 4734-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800578

RESUMO

BACKGROUND: The insulin-like growth factor (IGF) system is composed of ligands and receptors which regulate cell proliferation, survival, differentiation and migration. Some of these functions involve regulation by the extracellular milieu, including binding proteins and other extracellular matrix proteins. However, the functions and exact nature of these interactions remain incomplete. METHODS: IGF-I variants PEGylated at lysines K27, K65 and K68, were assessed for binding to IGFBPs using BIAcore, and for phosphorylation of the IGF-IR. Furthermore, functional consequences of PEGylation were investigated using cell viability and migration assays. In addition, downstream signaling pathways were analyzed using phospho-AKT and phospho-ERK1/2 assays. RESULTS: IGF-I PEGylated at lysines 27 (PEG-K27), 65 (PEG-K65) or 68 (PEG-K68) was employed. Receptor phosphorylation was similarly reduced 2-fold with PEG-K65 and PEG-K68 in 3T3 fibroblasts and MCF-7 breast cancer cells, whereas PEG-K27 showed a more than 10- and 3-fold lower activation for 3T3 and MCF-7 cells, respectively. In addition, all PEG-IGF-I variants had a 10-fold reduced association rate to IGF binding proteins (IGFBPs). Functionally, all PEG variants lost their ability to induce cell migration in the presence of IGFBP-3/vitronectin (VN) complexes, whereas cell viability was fully preserved. Analysis of downstream signaling revealed that AKT was preferentially affected upon treatment with PEG-IGF-I variants whereas MAPK signaling was unaffected by PEGylation. CONCLUSION: PEGylation of IGF-I has an impact on cell migration but not on cell viability. GENERAL SIGNIFICANCE: PEG-IGF-I may differentially modulate IGF-I mediated functions that are dependent on receptor interaction as well as key extracellular proteins such as VN and IGFBPs.


Assuntos
Movimento Celular/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Lisina/metabolismo , Polietilenoglicóis/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Humanos , Células MCF-7 , Camundongos , Células NIH 3T3 , Fosforilação , Polietilenoglicóis/química , Receptor IGF Tipo 1/metabolismo , Proteínas Recombinantes/metabolismo
6.
Growth Horm IGF Res ; 23(4): 128-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23608055

RESUMO

OBJECTIVE: Musculoskeletal injuries represent a major public health problem and drugs that can improve muscle repair and restore function are needed for patients with these conditions and other related muscular pathologies. Increasing insulin-like growth factor-I (IGF-I) levels in skeletal muscle improves regeneration after myotoxic injury and while administration of IGF-I has a potential for accelerating healing after trauma, optimizing its method of delivery and obviating potential side-effects currently associated with recombinant human (rh) IGF-I, remain a hurdle. DESIGN: We compared the treatment efficacy of rhIGF-I with a polyethylene glycol modified IGF-I (PEG-IGF-I) analog to improve functional repair of mouse tibialis anterior muscles after myotoxic injury, testing the hypothesis that PEG-IGF-I would exert greater beneficial effects on regenerating skeletal muscles than rhIGF-I due to improved pharmacokinetic properties. We also examined the relative efficacy of systemic versus local delivery of these IGF-I variants for improving functional muscle regeneration. RESULTS: Local delivery of PEG-IGF-I, but not rhIGF-I, at 4 days post-injury significantly improved early functional recovery as evident by a 27% increase in normalized force compared with saline control (P<0.05), whereas systemic application of either IGF-I variant was not effective. The improved function with intramuscular PEG-IGF-I administration was attributed to a greater and prolonged residence within the regenerating muscles, resulting in increased Akt activation and a 13% larger fiber cross-sectional area compared with rhIGF-I (P<0.05). CONCLUSIONS: These data support the hypothesis that PEG-IGF-I is more efficacious than rhIGF-I in hastening early fiber regeneration and improving muscle function after injury, highlighting its therapeutic potential for muscular pathologies.


Assuntos
Fator de Crescimento Insulin-Like I/administração & dosagem , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/citologia , Doenças Musculares/tratamento farmacológico , Polietilenoglicóis/química , Regeneração/fisiologia , Animais , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imunofluorescência , Humanos , Injeções Intramusculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/lesões , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Recuperação de Função Fisiológica/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Hum Mol Genet ; 22(13): 2626-33, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23462290

RESUMO

Rett syndrome (RTT), an X-linked postnatal disorder, results from mutations in Methyl CpG-binding protein 2 (MECP2). Survival and breathing in Mecp2(NULL/Y) animals are improved by an N-terminal tripeptide of insulin-like growth factor I (IGF-I) treatment. We determined that Mecp2(NULL/Y) animals also have a metabolic syndrome and investigated whether IGF-I treatment might improve this phenotype. Mecp2(NULL/Y) mice were treated with a full-length IGF-I modified with the addition of polyethylene glycol (PEG-IGF-I), which improves pharmacological properties. Low-dose PEG-IGF-I treatment slightly improved lifespan and heart rate in Mecp2(NULL/Y) mice; however, high-dose PEG-IGF-I decreased lifespan. To determine whether insulinotropic off-target effects of PEG-IGF-I caused the detrimental effect, we treated Mecp2(NULL/Y) mice with insulin, which also decreased lifespan. Thus, the clinical benefit of IGF-I treatment in RTT may critically depend on the dose used, and caution should be taken when initiating clinical trials with these compounds because the beneficial therapeutic window is narrow.


Assuntos
Fator de Crescimento Insulin-Like I/administração & dosagem , Síndrome Metabólica/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Frequência Cardíaca/efeitos dos fármacos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Longevidade/efeitos dos fármacos , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Knockout
8.
Brain ; 136(Pt 3): 957-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404338

RESUMO

Myotonic dystrophy type 1 is a complex multisystemic inherited disorder, which displays multiple debilitating neurological manifestations. Despite recent progress in the understanding of the molecular pathogenesis of myotonic dystrophy type 1 in skeletal muscle and heart, the pathways affected in the central nervous system are largely unknown. To address this question, we studied the only transgenic mouse line expressing CTG trinucleotide repeats in the central nervous system. These mice recreate molecular features of RNA toxicity, such as RNA foci accumulation and missplicing. They exhibit relevant behavioural and cognitive phenotypes, deficits in short-term synaptic plasticity, as well as changes in neurochemical levels. In the search for disease intermediates affected by disease mutation, a global proteomics approach revealed RAB3A upregulation and synapsin I hyperphosphorylation in the central nervous system of transgenic mice, transfected cells and post-mortem brains of patients with myotonic dystrophy type 1. These protein defects were associated with electrophysiological and behavioural deficits in mice and altered spontaneous neurosecretion in cell culture. Taking advantage of a relevant transgenic mouse of a complex human disease, we found a novel connection between physiological phenotypes and synaptic protein dysregulation, indicative of synaptic dysfunction in myotonic dystrophy type 1 brain pathology.


Assuntos
Comportamento Animal/fisiologia , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Adulto , Idoso , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Eletrofisiologia , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Distrofia Miotônica/complicações , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Expansão das Repetições de Trinucleotídeos
9.
Amyotroph Lateral Scler ; 13(5): 418-29, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22871074

RESUMO

Insulin-like growth factor I (IGF-I) has been successfully tested in the SOD1-G93A mouse model of familial amyotrophic lateral sclerosis (ALS) and proposed for clinical treatment. However, beneficial effects required gene therapy or intrathecal application. Circumventing the dosing issues we recently found that polyethylene glycol (PEG) modified IGF-I (PEG-IGF-I) modulated neuromuscular function after systemic application, and protected against disease progression in a motor neuron disease model. Here we investigated its effects in two SOD1-G93A mouse lines, the G1L with a milder and the G1H with a more severe phenotype. Results showed that in G1L mice, PEG-IGF-I treatment significantly improved muscle force, motor coordination and animal survival. In contrast, treatment of G1H mice with PEG-IGF-I or IGF-I even at high doses did not beneficially affect survival or functional outcomes despite increased signalling in brain and spinal cord by both agents. In conclusion, the data point towards further investigation of the therapeutic potential of PEG-IGF-I in ALS patients with less severe clinical phenotypes.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Fator de Crescimento Insulin-Like I/uso terapêutico , Neurônios Motores/efeitos dos fármacos , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Índice de Gravidade de Doença
10.
J Biol Chem ; 286(22): 19501-10, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21460230

RESUMO

Insulin-like growth factor I (IGF-I) has important anabolic and homeostatic functions in tissues like skeletal muscle, and a decline in circulating levels is linked with catabolic conditions. Whereas IGF-I therapies for musculoskeletal disorders have been postulated, dosing issues and disruptions of the homeostasis have so far precluded clinical application. We have developed a novel IGF-I variant by site-specific addition of polyethylene glycol (PEG) to lysine 68 (PEG-IGF-I). In vitro, this modification decreased the affinity for the IGF-I and insulin receptors, presumably through decreased association rates, and slowed down the association to IGF-I-binding proteins, selectively limiting fast but maintaining sustained anabolic activity. Desirable in vivo effects of PEG-IGF-I included increased half-life and recruitment of IGF-binding proteins, thereby reducing risk of hypoglycemia. PEG-IGF-I was equipotent to IGF-I in ameliorating contraction-induced muscle injury in vivo without affecting muscle metabolism as IGF-I did. The data provide an important step in understanding the differences of IGF-I and insulin receptor contribution to the in vivo activity of IGF-I. In addition, PEG-IGF-I presents an innovative concept for IGF-I therapy in diseases with indicated muscle dysfunction.


Assuntos
Fator de Crescimento Insulin-Like I/farmacocinética , Músculo Esquelético/metabolismo , Doenças Musculoesqueléticas/tratamento farmacológico , Polietilenoglicóis/farmacocinética , Receptor de Insulina/agonistas , Animais , Linhagem Celular , Cães , Meia-Vida , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/química , Fator de Crescimento Insulin-Like I/farmacologia , Músculo Esquelético/patologia , Doenças Musculoesqueléticas/metabolismo , Doenças Musculoesqueléticas/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...