Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasite Immunol ; 46(4): e13033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38607285

RESUMO

Canine demodicosis is a prevalent skin disease caused by overpopulation of a commensal species of Demodex mite, yet its precise cause remains unknown. Research suggests that T-cell exhaustion, increased immunosuppressive cytokines, induction of regulatory T cells and increased expression of immune checkpoint inhibitors may contribute to its pathogenesis. This study aimed to gain a deeper understanding of the molecular changes occurring in canine demodicosis using mass spectrometry and pathway enrichment analysis. The results indicate that endoplasmic reticulum stress promotes canine demodicosis through regulation of three linked signalling pathways: eIF2, mTOR, and eIF4 and p70S6K. These pathways are involved in the modulation of Toll-like receptors, most notably TLR2, and have been shown to play a role in the pathogenesis of skin diseases in both dogs and humans. Moreover, these pathways are also implicated in the promotion of immunosuppressive M2 phenotype macrophages. Immunohistochemical analysis, utilising common markers of dendritic cells and macrophages, verified the presence of M2 macrophages in canine demodicosis. The proteomic analysis also identified immunological disease, organismal injury and abnormalities and inflammatory response as the most significant underlying diseases and disorders associated with canine demodicosis. This study demonstrates that Demodex mites, through ER stress, unfolded protein response and M2 macrophages contribute to an immunosuppressive microenvironment, thereby assisting in their proliferation.


Assuntos
Estresse do Retículo Endoplasmático , Proteômica , Humanos , Cães , Animais , Citocinas , Macrófagos , Fenótipo
2.
ACS Nano ; 17(18): 17799-17810, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37669145

RESUMO

Protein therapeutics are highly promising for complex disease treatment. However, the lack of ideal delivery vectors impedes their clinical use, especially the carriers for in vivo delivery of functional cytosolic protein. In this study, we modified poly(ß amino ester)s (PAEs) with a phenyl guanidine (PG) group to enhance their suitability for cytosolic protein delivery. The effects of the PG group on protein binding, cell internalization, protein function protection, and endo/lysosomal escape were systematically evaluated. Compared to the unmodified PAEs (L3), guanidyl rich PAEs (L3PG) presented superior efficiency of protein binding and protein internalization, mainly via clathrin-mediated endocytosis. In addition, both PAEs showed robust capabilities to deliver cytosolic proteins with different molecular weight (ranging from 30 to 464 kDa) and isoelectric points (ranging from 4.3 to 9), which were significantly improved in comparison with the commercial reagents of PULsin and Pierce Protein Transection Reagent. Moreover, L3PG successfully delivered Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas9 ribonucleoprotein (RNP) into HeLa cells expressing green fluorescent protein (GFP) and achieved more than 80% GFP expression knockout. These results demonstrated that guanidyl modification on PAEs can enhance its capabilities for intracellular delivery of cytosolic functional proteins and CRISPR/Cas9 ribonucleoprotein. The guanidyl-rich PAEs are promising nonviral vectors for functional protein delivery and potential use in protein and nuclease-based gene editing therapies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Células HeLa , Proteínas de Fluorescência Verde , Ésteres , Guanidina , Guanidinas
3.
ACS Appl Mater Interfaces ; 15(30): 36667-36675, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37477432

RESUMO

Gene therapy has emerged as a significant advancement in medicine in recent years. However, the development of effective gene delivery vectors, particularly polymer vectors, remains a significant challenge. Limited understanding of the internal structure of polymer vectors has hindered efforts to enhance their efficiency. This work focuses on investigating the impact of polymer structure on gene delivery, using the well-known polymeric vector poly(ß-amino ester) (PAE) as a case study. For the first time, we revealed the distinct characteristics of individual polymer components and their synergistic effects-the appropriate combination of different components within a polymer (high MW and low MW components) on gene delivery. Additionally, artificial intelligence (AI) analysis was employed to decipher the relationship between the polymer component distribution (PCD) and gene transfection performance. Guided by this analysis, a series of highly efficient polymer vectors that outperform current commercial reagents such as jetPEI and Lipo3000 were developed, among which the transfection efficiency of the PAE-B1-based polyplex was approximately 1.5 times that of Lipo3000 and 2 times that of jetPEI in U251 cells.


Assuntos
Inteligência Artificial , Polímeros , Polímeros/química , Técnicas de Transferência de Genes , Transfecção , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...