Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(8): 1940-1949, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39043119

RESUMO

Epoxidized soybean oil (ESO) is routinely used as a bioderived plasticizer and stabilizer in polyvinyl chloride (PVC), as it prolongs material integrity during dehydrochlorination. During this process, the epoxide moieties of ESO are progressively converted to chlorohydrins, which amplify ESO's inherent structural complexity. Past characterization efforts utilized separation-mass spectrometry (MS) analysis of the hydrolyzed acyl chains to simplify the complexity. However, this approach significantly increases the complexity of sample preparation and cannot directly monitor the chlorination of individual ESO species during aging. Here, we present a comprehensive LC-MS/MS data acquisition and in silico spectral library identification workflow optimized for intact ESO byproduct analysis. Detailed MS/MS fragmentation rules derived from synthesized standards were coupled with improved fragment ion intensity modeling capabilities to generate a high-fidelity spectral library for rapid ESO byproduct identification. Identification confidence was further bolstered by using retention time modeling to filter spurious MS/MS matches. Finally, we paired this informatic approach with an optimized extraction procedure and reversed-phase separation to generate a detailed timeline of more than 400 ESO species and byproducts during PVC thermal aging. These developments significantly improve our ability to detect, characterize, and understand ESO degradation in complex PVC formulations with new levels of molecular resolution.

2.
Nano Lett ; 20(5): 4007-4013, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32357005

RESUMO

Nanocrystal gelation provides a powerful framework to translate nanoscale properties into bulk materials and to engineer emergent properties through the assembled microstructure. However, many established gelation strategies rely on chemical reactions and specific interactions, e.g., stabilizing ligands or ions on the nanocrystals' surfaces, and are therefore not easily transferable. Here, we report a general gelation strategy via nonspecific and purely entropic depletion attractions applied to three types of metal oxide nanocrystals. The gelation thresholds of two compositionally distinct spherical nanocrystals agree quantitatively, demonstrating the adaptability of the approach for different chemistries. Consistent with theoretical phase behavior predictions, nanocrystal cubes form gels at a lower polymer concentration than nanocrystal spheres, allowing shape to serve as a handle to control gelation. These results suggest that the fundamental underpinnings of depletion-driven assembly, traditionally associated with larger colloidal particles, are also applicable at the nanoscale.

3.
Nano Lett ; 19(11): 8149-8154, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31657940

RESUMO

The optical extinction coefficients of localized surface plasmon resonance (LSPR) in doped semiconductor nanocrystals (NCs) have intensities determined by the density and damping mechanisms of free charge carriers. We investigate the dependence of the extinction coefficient of tin-doped indium oxide (ITO) NCs on size and dopant concentration and find extinction coefficients as high as 56.6 µm-1 in the near-infrared for 20 nm diameter ITO NCs with 7.5 atomic% Sn. We find ITO NCs to be more efficient infrared light absorbers than metal nanoparticles or molecular dyes. We also find the intensive, volume-normalized extinction coefficient increases significantly with NC doping and NC diameter, but only up to the point of saturation in both cases. We qualitatively analyze trends in LSPR peak position and width to explain the effect of doping and size on extinction.

4.
Proc Natl Acad Sci U S A ; 115(36): 8925-8930, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127030

RESUMO

Gelation of colloidal nanocrystals emerged as a strategy to preserve inherent nanoscale properties in multiscale architectures. However, available gelation methods to directly form self-supported nanocrystal networks struggle to reliably control nanoscale optical phenomena such as photoluminescence and localized surface plasmon resonance (LSPR) across nanocrystal systems due to processing variabilities. Here, we report on an alternative gelation method based on physical internanocrystal interactions: short-range depletion attractions balanced by long-range electrostatic repulsions. The latter are established by removing the native organic ligands that passivate tin-doped indium oxide (ITO) nanocrystals while the former are introduced by mixing with small PEG chains. As we incorporate increasing concentrations of PEG, we observe a reentrant phase behavior featuring two favorable gelation windows; the first arises from bridging effects while the second is attributed to depletion attractions according to phase behavior predicted by our unified theoretical model. Our assembled nanocrystals remain discrete within the gel network, based on X-ray scattering and high-resolution transmission electron microscopy. The infrared optical response of the gels is reflective of both the nanocrystal building blocks and the network architecture, being characteristic of ITO nanocrystals' LSPR with coupling interactions between neighboring nanocrystals.

5.
Nat Mater ; 15(12): 1267-1273, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27548708

RESUMO

Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and 'nanocrystal-in-glass' composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA