Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(5): e0153913, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27149115

RESUMO

Study has been made of the thermoluminescence (TL) response of silica-based Ge-doped cylindrical, flat and photonic crystal fibres (referred to herein as PCF-collapsed) to electron (6, 12 and 20 MeV) and photon (6, 10 MV) irradiation and 1.25 MeV γ-rays, for doses from 0.1 Gy to 100 Gy. The electron and photon irradiations were delivered through use of a Varian Model 2100C linear accelerator located at the University of Malaya Medical Centre and γ-rays delivered from a 60Co irradiator located at the Secondary Standard Dosimetry Laboratory (SSDL), Malaysian Nuclear Agency. Tailor-made to be of various dimensions and dopant concentrations (6-10% Ge), the fibres were observed to provide TL yield linear with radiation dose, reproducibility being within 1-5%, with insensitivity to energy and angular variation. The sensitivity dependency of both detectors with respect to field size follows the dependency of the output factors. For flat fibres exposed to 6 MV X-rays, the 6% Ge-doped fibre provided the greatest TL yield while PCF-collapsed showed a response 2.4 times greater than that of the 6% Ge-doped flat fibres. The response of cylindrical fibres increased with core size. The fibres offer uniform response, high spatial resolution and sensitivity, providing the basis of promising TL systems for radiotherapy applications.


Assuntos
Dióxido de Silício/efeitos da radiação , Dosimetria Termoluminescente , Relação Dose-Resposta à Radiação , Elétrons , Raios gama , Fibras Ópticas , Fótons , Radioterapia/métodos , Dióxido de Silício/química
2.
Eur Radiol ; 26(1): 79-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26002131

RESUMO

OBJECTIVES: To develop a real-time dose-monitoring system to measure the patient's eye lens dose during neuro-interventional procedures. METHODS: Radiation dose received at left outer canthus (LOC) and left eyelid (LE) were measured using Metal-Oxide-Semiconductor Field-Effect Transistor dosimeters on 35 patients who underwent diagnostic or cerebral embolization procedures. RESULTS: The radiation dose received at the LOC region was significantly higher than the dose received by the LE. The maximum eye lens dose of 1492 mGy was measured at LOC region for an AVM case, followed by 907 mGy for an aneurysm case and 665 mGy for a diagnostic angiography procedure. Strong correlations (shown as R(2)) were observed between kerma-area-product and measured eye doses (LOC: 0.78, LE: 0.68). Lateral and frontal air-kerma showed strong correlations with measured dose at LOC (AKL: 0.93, AKF: 0.78) and a weak correlation with measured dose at LE. A moderate correlation was observed between fluoroscopic time and dose measured at LE and LOC regions. CONCLUSIONS: The MOSkin dose-monitoring system represents a new tool enabling real-time monitoring of eye lens dose during neuro-interventional procedures. This system can provide interventionalists with information needed to adjust the clinical procedure to control the patient's dose. KEY POINTS: Real-time patient dose monitoring helps interventionalists to monitor doses. Strong correlation was observed between kerma-area-product and measured eye doses. Radiation dose at left outer canthus was higher than at left eyelid.


Assuntos
Angiografia Cerebral/métodos , Cristalino/efeitos da radiação , Embolização Terapêutica/métodos , Desenho de Equipamento , Feminino , Fluoroscopia/métodos , Humanos , Aneurisma Intracraniano/terapia , Masculino , Pessoa de Meia-Idade , Doses de Radiação , Radiografia Intervencionista/métodos
3.
Med Phys ; 42(5): 2550-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979047

RESUMO

PURPOSE: The MOSkin is a MOSFET detector designed especially for skin dose measurements. This detector has been characterized for various factors affecting its response for megavoltage photon beams and has been used for patient dose measurements during radiotherapy procedures. However, the characteristics of this detector in kilovoltage photon beams and low dose ranges have not been studied. The purpose of this study was to characterize the MOSkin detector to determine its suitability for in vivo entrance skin dose measurements during interventional radiology procedures. METHODS: The calibration and reproducibility of the MOSkin detector and its dependency on different radiation beam qualities were carried out using RQR standard radiation qualities in free-in-air geometry. Studies of the other characterization parameters, such as the dose linearity and dependency on exposure angle, field size, frame rate, depth-dose, and source-to-surface distance (SSD), were carried out using a solid water phantom under a clinical x-ray unit. RESULTS: The MOSkin detector showed good reproducibility (94%) and dose linearity (99%) for the dose range of 2 to 213 cGy. The sensitivity did not significantly change with the variation of SSD (± 1%), field size (± 1%), frame rate (± 3%), or beam energy (± 5%). The detector angular dependence was within ± 5% over 360° and the dose recorded by the MOSkin detector in different depths of a solid water phantom was in good agreement with the Markus parallel plate ionization chamber to within ± 3%. CONCLUSIONS: The MOSkin detector proved to be reliable when exposed to different field sizes, SSDs, depths in solid water, dose rates, frame rates, and radiation incident angles within a clinical x-ray beam. The MOSkin detector with water equivalent depth equal to 0.07 mm is a suitable detector for in vivo skin dosimetry during interventional radiology procedures.


Assuntos
Radiologia Intervencionista/instrumentação , Radiologia Intervencionista/métodos , Radiometria/instrumentação , Radiometria/métodos , Pele/efeitos da radiação , Calibragem , Relação Dose-Resposta à Radiação , Fluoroscopia/instrumentação , Fluoroscopia/métodos , Humanos , Modelos Lineares , Imagens de Fantasmas , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Água
4.
Appl Radiat Isot ; 70(5): 864-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22341953

RESUMO

The response function of NE102 plastic scintillator to gamma rays has been simulated using a joint FLUKA+PHOTRACK Monte Carlo code. The multi-purpose particle transport code, FLUKA, has been responsible for gamma transport whilst the light transport code, PHOTRACK, has simulated the transport of scintillation photons through scintillator and lightguide. The simulation results of plastic scintillator with/without light guides of different surface coverings have been successfully verified with experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...