Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(19): 13605-13617, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665498

RESUMO

The structural, electronic, and magnetic properties of novel half-Heusler alloys ScXGe (X = Mn, Fe) are investigated using the first principle full potential linearized augmented plane wave approach based on density functional theory (DFT). To attain the desired outcomes, we employed the exchange-correlation frameworks, specifically the local density approximation in combination with Perdew, Burke, and Ernzerhof's generalized gradient approximation plus the Hubbard U parameter method (GGA + U) to highlight the strong exchange-correlation interaction in these alloys. The structural parameter optimizations, whether ferromagnetic (FM) or nonmagnetic (NM), reveal that all ScXGe (where X = Mn, Fe) Heusler alloys attain their lowest ground state energy during FM optimization. The examination of the electronic properties of these alloys reveals their metallic character in both the spin-up and spin-down channels. The projected densities of states indicate that bonding is achieved through the hybridization of p-d and d-d states in all of the compounds. The investigation of the magnetic properties in ScXGe (where X = Mn, Fe) compounds indicates pronounced stability in their ferromagnetic state. Notably, the Curie temperatures for ScXGe (X = Mn, Fe) are determined to be 2177.02 K and 1656.09 K, respectively. The observation of metallic behavior and the strong ferromagnetic characteristics in ScXGe (X = Mn, Fe) half-Heusler alloys underscores their potential significance in the realm of spintronic devices. Consequently, our study serves as a robust foundation for subsequent experimental validation.

2.
RSC Adv ; 13(51): 35993-36008, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38090095

RESUMO

We investigate the morphological, electrical, magnetic, and resistive switching properties of (Co, Yb) co-ZnO for neuromorphic computing. By using hydrothermal synthesized nanoparticles and their corresponding sputtering target, we introduce Co and Yb into the ZnO structure, leading to increased oxygen vacancies and grain volume, indicating grain growth. This growth reduces grain boundaries, enhancing electrical conductivity and room-temperature ferromagnetism in Co and Yb-doped ZnO nanoparticles. We present a sputter-grown memristor with a (Co, Yb) co-ZnO layer between Au electrodes. Characterization confirms the ZnO layer's presence and 100 nm-thick Au electrodes. The memristor exhibits repeatable analog resistance switching, allowing manipulation of conductance between low and high resistance states. Statistical endurance tests show stable resistive switching with minimal dispersion over 100 pulse cycles at room temperature. Retention properties of the current states are maintained for up to 1000 seconds, demonstrating excellent thermal stability. A physical model explains the switching mechanism, involving Au ion migration during "set" and filament disruption during "reset." Current-voltage curves suggest space-charge limited current, emphasizing conductive filament formation. All these results shows good electronic devices and systems towards neuromorphic computing.

3.
Sci Rep ; 13(1): 19580, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949952

RESUMO

The removal of toxic dye pigments from the environment is of utmost importance since even trace amounts of these pollutants can lead to harmful impacts on ecosystems. Heterogeneous photocatalysis is a potential technique for eliminating microbiological, inorganic, and organic pollutants from wastewater. Here, we report the band gap alteration of ZnO by making its composites with CuSe to enhance photocatalytic activity. The purpose is to develop metal oxide nanocomposites (ZnO/CuSe) as an effective and efficient material for the photodegradation of methyl blue. The photocatalysts, ZnO nanorods, CuSe, and ZnO/CuSe nanocomposites of different weight ratios were synthesized by the simple and cost-effective technique of precipitation. UV-Vis spectra verified that the ZnO/CuSe photocatalyst improved absorption in the visible region. The optical bandgap of ZnO/CuSe nanocomposites reduced from 3.37 to 2.68 eV when CuSe concentration increased from 10 to 50%. ZnO/CuSe composites demonstrated better photocatalytic activity than ZnO when exposed to UV-visible light. The pure ZnO nanorods could absorb UV light and the nanocomposites could absorb visible light only; this was attributed to the transfer of excited high-energy electrons from ZnO to CuSe.

4.
Sci Rep ; 13(1): 8646, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244922

RESUMO

This study explored the structural, optical, and dielectric properties of Pure and Mn+2 doped ZnO nano-particles (Zn1-xMnxO) with x ≥ 20%, synthesized by co-precipitation method followed by annealing at 4500C. Different characterization techniques were conducted to characterize the as-prepared nano-particles. X-ray Diffraction analysis of the pure and Mn+2 doped presented a hexagonal wurtzite structure and a decreased crystallite size with increasing doping concentration. Morphological analysis from SEM revealed finely dispersed spherical nanoparticles with particle size of 40-50 nm. Compositional analysis from EDX confirmed the incorporation of Mn+2ions in ZnO structure. The Results of UV spectroscopy showed that changing the doping concentration affects the band gap, and a red shift is observed as the doping concentration is increased. The band gap changes from 3.3 to 2.75 eV. Dielectric measurements exhibited decrease in the relative permittivity, dielectric loss factor and ac conductivity by increasing Mn concentration.

5.
RSC Adv ; 12(25): 15767-15774, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35685706

RESUMO

Cobalt-doped TiO2-based diluted magnetic semiconductors were successfully synthesized using a co-precipitation method. The X-ray diffraction study of all the samples showed good crystallinity, matching the standard tetragonal anatase phase. The X-ray diffraction peaks of the cobalt-doped sample slightly shifted towards a lower angle showing the decrease in particle size and distortion in the unit cell due to cobalt incorporation in the lattice of TiO2. Transmission electron microscopy showed the spherical morphology of the TiO2 nanoparticles, which decreased with Co-doping. The optical characteristics and band gap investigation revealed that defects and oxygen vacancies resulted in lower band gap energy and maximum absorption in the visible region. Dielectric measurements showed enhancement in the dielectric constant and AC conductivity, while the dielectric loss decreased. The enhancement in the dielectric properties was attributed to interfacial polarization and charge carrier hopping between Co and Ti ions. The magnetic properties displayed that pure TiO2 was diamagnetic, while Co-doped TiO2 showed a ferromagnetic response at 300 K. The visible light-driven photocatalytic activity showed an improvement for Co-doped TiO2. Our results demonstrate that Co-doping can be used to tune the physical properties and photocatalytic activity of TiO2 for possible spin-based electronics, optoelectronics, and photo-degradation applications.

6.
RSC Adv ; 12(19): 11923-11932, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35481075

RESUMO

This paper addresses the effect of Mn (2%, fixed) and Co (2, 4, and 6%, varied) substitution on the structural, optical, dielectric and magnetic responses of ZnO nanoparticles synthesized by the co-precipitation chemical route. The X-ray diffraction analysis confirms the hexagonal wurtzite structure of ZnO. The incorporation of co-doping in the ZnO host, indicated by peak shifting in the XRD patterns, enhanced the crystallite size of the Mn/Co dual-doped ZnO nanoparticles. The FTIR spectra show a characteristic peak around 875 cm-1 assigned to Zn-O stretching, this validates the formation of the wurtzite structure of ZnO. Raman spectroscopy reveals the characteristic band of the wurtzite structure of ZnO nanoparticles along with coupled vibration modes of Mn/Co with the donor defect states in the doped samples. Enhanced optical absorption in the visible region and a significant red-shift in the absorption band edge were found due to doping. The optical band gap is found to decrease from 3.45 eV to 3.15 eV when Co doping increases up to 6%. The dielectric properties, strongly frequency-dependent, decrease with increasing Co doping while the electrical conductivity increases. Ferromagnetism is observed in all the doped samples, and its origin is attributed to an increase in oxygen vacancies which form bound magnetic polarons. It can be inferred that the doping of Mn and Co can be an effective tool to tune the physical properties of ZnO nanoparticles for potential spintronics and high-frequency applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA