Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-37745438

RESUMO

Neurodevelopmental disorders (NDDs) are a category of pervasive disorders of the developing nervous system with few or no recognized biomarkers. A significant portion of the risk for NDDs, including attention deficit hyperactivity disorder (ADHD), is contributed by the environment, and exposure to pyrethroid pesticides during pregnancy has been identified as a potential risk factor for NDD in the unborn child. We recently showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice causes male-biased changes to ADHD- and NDD-relevant behaviors as well as the striatal dopamine system. Here, we used an integrated multiomics approach to determine the broadest possible set of biological changes in the mouse brain caused by developmental pyrethroid exposure (DPE). Using a litter-based, split-sample design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood, euthanized them, and pulverized and divided whole brain samples for split-sample transcriptomics, kinomics and multiomics integration. Transcriptome analysis revealed alterations to multiple canonical clock genes, and kinome analysis revealed changes in the activity of multiple kinases involved in synaptic plasticity, including the mitogen-activated protein (MAP) kinase ERK. Multiomics integration revealed a dysregulated protein-protein interaction network containing primary clusters for MAP kinase cascades, regulation of apoptosis, and synaptic function. These results demonstrate that DPE causes a multi-modal biophenotype in the brain relevant to ADHD and identifies new potential mechanisms of action.

2.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37961675

RESUMO

Environmental and genetic risk factors, and their interactions, contribute significantly to the etiology of neurodevelopmental disorders (NDDs). Recent epidemiology studies have implicated pyrethroid pesticides as an environmental risk factor for autism and developmental delay. Our previous research showed that low-dose developmental exposure to the pyrethroid pesticide deltamethrin in mice caused male-biased changes in the brain and in NDD-relevant behaviors in adulthood. Here, we used a metabolomics approach to determine the broadest possible set of metabolic changes in the adult male mouse brain caused by low-dose pyrethroid exposure during development. Using a litter-based design, we exposed mouse dams during pregnancy and lactation to deltamethrin (3 mg/kg or vehicle every 3 days) at a concentration well below the EPA-determined benchmark dose used for regulatory guidance. We raised male offspring to adulthood and collected whole brain samples for untargeted high-resolution metabolomics analysis. Developmentally exposed mice had disruptions in 116 metabolites which clustered into pathways for folate biosynthesis, retinol metabolism, and tryptophan metabolism. As a cross-validation, we integrated metabolomics and transcriptomics data from the same samples, which confirmed previous findings of altered dopamine signaling. These results suggest that pyrethroid exposure during development leads to disruptions in folate metabolism in the adult brain, which may inform both prevention and therapeutic strategies.

3.
Physiol Genomics ; 54(5): 177-185, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442774

RESUMO

Human-generated negative impacts on aquatic environments are rising. Despite wild fish playing a key role in aquatic ecologies and comprising a major global food source, physiological consequences of these impacts on them are poorly understood. Here we address the issue through the lens of interrelationship between wild fish and their gut microbiota, hypothesizing that fish microbiota are reporters of the aquatic environs. Two geographically separate teleost wild-fish species were studied (Lake Erie, Ohio, and Caribbean Sea, US Virgin Islands). At each geolocation, fresh fecal samples were collected from fish in areas of presence or absence of known aquatic compromise. Gut microbiota was assessed via microbial 16S-rRNA gene sequencing and represents the first complete report for both fish species. Despite marked differences in geography, climate, water type, fish species, habitat, diet, and gut microbial compositions, the pattern of shifts in microbiota shared by both fish species was nearly identical due to aquatic compromise. Next, these data were subjected to machine learning (ML) to examine reliability of using the fish-gut microbiota as an ecomarker for anthropogenic aquatic impacts. Independent of geolocation, ML predicted aquatic compromise with remarkable accuracy (>90%). Overall, this study represents the first multispecies stress-related comparison of its kind and demonstrates the potential of artificial intelligence via ML as a tool for biomonitoring and detecting compromised aquatic conditions.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Inteligência Artificial , Peixes/genética , Microbioma Gastrointestinal/genética , Aprendizado de Máquina , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...