Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Blood Adv ; 7(19): 5970-5981, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37093647

RESUMO

Effective treatments for genetic disorders that coevolved with pathogens require simultaneous betterment of both conditions. Hydroxyurea (HU) offers safe and efficacious treatment for sickle cell anemia (SCA) by reducing clinical complications, transfusions, and death rates. Despite concerns that the HU treatment for SCA would increase infection risk by the human malaria Plasmodium falciparum, (the genetic driver of the sickle mutation), HU instead reduced clinical malaria. We used physiologically relevant drug exposures that mimic in vivo pharmacokinetics in humans. Under these conditions, we showed that HU and other ribonucleotide reductase (RNR) inhibitors have significant, intrinsic killing activity in vitro against schizont stages of P falciparum in both normal and sickle red blood cells. Long-term in vitro selection with HU increased the expression of Pfrnr genes but showed a low risk of eliciting stably resistant parasites or compromising the potency of current antimalarial drugs. Additive activity devoid of antagonism by HU was observed with a wide spectrum of commonly used antimalarial treatments. These data endorse broad, safe, and long-term use of HU for SCA in malaria-endemic countries and provide a novel biological model for the treatment of a genetic disorder with simultaneous, adjunct therapy of a life-threatening infection needed in a global health setting.


Assuntos
Anemia Falciforme , Malária Falciparum , Malária , Humanos , Anemia Falciforme/complicações , Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/genética , Hidroxiureia/farmacologia , Hidroxiureia/uso terapêutico , Eritrócitos , Transfusão de Sangue , Malária/tratamento farmacológico , Malária/complicações , Malária Falciparum/tratamento farmacológico
2.
mBio ; 13(1): e0344421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073756

RESUMO

Emerging resistance to artemisinin drugs threatens the elimination of malaria. Resistance is widespread in South East Asia (SEA) and Myanmar. Neighboring Bangladesh, where 90% of infections occur in the Chittagong Hill Tracts (CHTs), lacks recent assessment. We undertook a prospective study in the sole district-level hospital in Bandarban, a CHT district with low population densities but 60% of reported malaria cases. Thirty patients presented with malaria in 2018. An increase to 68 patients in 2019 correlated with the district-level rise in malaria, rainfall, humidity, and temperature. Twenty-four patients (7 in 2018 and 17 in 2019) with uncomplicated Plasmodium falciparum monoinfection were assessed for clearing parasites after starting artemisinin combination therapy (ACT). The median (range) time to clear half of the initial parasites was 5.6 (1.5 to 9.6) h, with 20% of patients showing a median of 8 h. There was no correlation between parasite clearance and initial parasitemia, blood cell counts, or mutations of P. falciparum gene Pfkelch13 (the molecular marker of artemisinin resistance [AR]). The in vitro ring-stage survival assay (RSA) revealed one (of four) culture-adapted strains with a quantifiable resistance of 2.01% ± 0.1% (mean ± standard error of the mean [SEM]). Regression analyses of in vivo and in vitro measurements of the four CHT strains and WHO-validated K13 resistance mutations yielded good correlation (R2 = 0.7; ρ = 0.9, P < 0.005), strengthening evaluation of emerging AR with small sample sizes, a challenge in many low/moderate-prevalence sites. There is an urgent need to deploy multiple, complementary approaches to understand the evolutionary dynamics of the emergence of P. falciparum resistant to artemisinin derivatives in countries where malaria is endemic. IMPORTANCE Malaria elimination is a Millennium Development Goal. Artemisinins, fast-acting antimalarial drugs, have played a key role in malaria elimination. Emergence of artemisinin resistance threatens the global elimination of malaria. Over the last decade, advanced clinical and laboratory methods have documented its spread throughout South East Asia and Myanmar. Neighboring Bangladesh lies in the historical path of dissemination of antimalarial resistance to the rest of the world, yet it has not been evaluated by combinations of leading methods, particularly in the highland Chittagong Hill Tracts adjacent to Myanmar which contain >90% of malaria in Bangladesh. We show the first establishment of capacity to assess clinical artemisinin resistance directly in patients in the hilltops and laboratory adaptation of Bangladeshi parasite strains from a remote, sparsely populated malaria frontier that is responsive to climate. Our study also provides a generalized model for comprehensive monitoring of drug resistance for countries where malaria is endemic.


Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Artemisininas/uso terapêutico , Bangladesh , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Estudos Prospectivos , Proteínas de Protozoários/genética
4.
PLoS Med ; 18(5): e1003632, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34038413

RESUMO

BACKGROUND: A very large biomass of intact asexual-stage malaria parasites accumulates in the spleen of asymptomatic human individuals infected with Plasmodium vivax. The mechanisms underlying this intense tropism are not clear. We hypothesised that immature reticulocytes, in which P. vivax develops, may display high densities in the spleen, thereby providing a niche for parasite survival. METHODS AND FINDINGS: We examined spleen tissue in 22 mostly untreated individuals naturally exposed to P. vivax and Plasmodium falciparum undergoing splenectomy for any clinical indication in malaria-endemic Papua, Indonesia (2015 to 2017). Infection, parasite and immature reticulocyte density, and splenic distribution were analysed by optical microscopy, flow cytometry, and molecular assays. Nine non-endemic control spleens from individuals undergoing spleno-pancreatectomy in France (2017 to 2020) were also examined for reticulocyte densities. There were no exclusion criteria or sample size considerations in both patient cohorts for this demanding approach. In Indonesia, 95.5% (21/22) of splenectomy patients had asymptomatic splenic Plasmodium infection (7 P. vivax, 13 P. falciparum, and 1 mixed infection). Significant splenic accumulation of immature CD71 intermediate- and high-expressing reticulocytes was seen, with concentrations 11 times greater than in peripheral blood. Accordingly, in France, reticulocyte concentrations in the splenic effluent were higher than in peripheral blood. Greater rigidity of reticulocytes in splenic than in peripheral blood, and their higher densities in splenic cords both suggest a mechanical retention process. Asexual-stage P. vivax-infected erythrocytes of all developmental stages accumulated in the spleen, with non-phagocytosed parasite densities 3,590 times (IQR: 2,600 to 4,130) higher than in circulating blood, and median total splenic parasite loads 81 (IQR: 14 to 205) times greater, accounting for 98.7% (IQR: 95.1% to 98.9%) of the estimated total-body P. vivax biomass. More reticulocytes were in contact with sinus lumen endothelial cells in P. vivax- than in P. falciparum-infected spleens. Histological analyses revealed 96% of P. vivax rings/trophozoites and 46% of schizonts colocalised with 92% of immature reticulocytes in the cords and sinus lumens of the red pulp. Larger splenic cohort studies and similar investigations in untreated symptomatic malaria are warranted. CONCLUSIONS: Immature CD71+ reticulocytes and splenic P. vivax-infected erythrocytes of all asexual stages accumulate in the same splenic compartments, suggesting the existence of a cryptic endosplenic lifecycle in chronic P. vivax infection. Findings provide insight into P. vivax-specific adaptions that have evolved to maximise survival and replication in the spleen.


Assuntos
Plasmodium vivax/fisiologia , Reticulócitos/metabolismo , Baço/metabolismo , Baço/parasitologia , Esplenectomia/estatística & dados numéricos , Adolescente , Adulto , Infecções Assintomáticas , Feminino , Humanos , Indonésia , Malária Vivax/parasitologia , Malária Vivax/fisiopatologia , Masculino , Pessoa de Meia-Idade , Nova Guiné , Estudos Prospectivos , Adulto Jovem
5.
Blood Adv ; 2(20): 2581-2587, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30305267

RESUMO

The current paradigm in the pathogenesis of several hemolytic red blood cell disorders is that reduced cellular deformability is a key determinant of splenic sequestration of affected red cells. Three distinct features regulate cellular deformability: membrane deformability, surface area-to-volume ratio (cell sphericity), and cytoplasmic viscosity. By perfusing normal human spleens ex vivo, we had previously showed that red cells with increased sphericity are rapidly sequestered by the spleen. Here, we assessed the retention kinetics of red cells with decreased membrane deformability but without marked shape changes. A controlled decrease in membrane deformability (increased membrane rigidity) was induced by treating normal red cells with increasing concentrations of diamide. Following perfusion, diamide-treated red blood cells (RBCs) were rapidly retained in the spleen with a mean clearance half-time of 5.9 minutes (range, 4.0-13.0). Splenic clearance correlated positively with increased membrane rigidity (r = 0.93; P < .0001). To determine to what extent this increased retention was related to mechanical blockade in the spleen, diamide-treated red cells were filtered through microsphere layers that mimic the mechanical sensing of red cells by the spleen. Diamide-treated red cells were retained in the microsphilters (median, 7.5%; range, 0%-38.6%), although to a lesser extent compared with the spleen (median, 44.1%; range, 7.3%-64.0%; P < .0001). Taken together, these results have implications for understanding the sensitivity of the human spleen to sequester red cells with altered cellular deformability due to various cellular alterations and for explaining clinical heterogeneity of RBC membrane disorders.


Assuntos
Deformação Eritrocítica/fisiologia , Eritrócitos/metabolismo , Eritrócitos/citologia , Humanos , Baço/irrigação sanguínea
6.
Nat Rev Microbiol ; 16(3): 156-170, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29355852

RESUMO

A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum, in particular, artemisinin-based combination therapies (ACTs). Increasingly, ACTs are also used to treat Plasmodium vivax, the second major human malaria parasite. However, resistance to frontline artemisinins and partner drugs is now causing the failure of P. falciparum ACTs in southeast Asia. In this Review, we discuss our current knowledge of markers and mechanisms of resistance to artemisinins and ACTs. In particular, we describe the identification of mutations in the propeller domains of Kelch 13 as the primary marker for artemisinin resistance in P. falciparum and explore two major mechanisms of resistance that have been independently proposed: the activation of the unfolded protein response and proteostatic dysregulation of parasite phosphatidylinositol 3- kinase. We emphasize the continuing challenges and the imminent need to understand mechanisms of resistance to improve parasite detection strategies, develop new combinations to eliminate resistant parasites and prevent their global spread.


Assuntos
Antimaláricos/uso terapêutico , Resistência a Medicamentos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/administração & dosagem , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/genética
7.
Blood ; 131(11): 1234-1247, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29363540

RESUMO

Artemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.


Assuntos
Artemisininas/farmacologia , Resistência a Medicamentos , Retículo Endoplasmático , Eritrócitos/parasitologia , Lactonas/farmacologia , Plasmodium falciparum , Proteínas de Protozoários , Resposta a Proteínas não Dobradas , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Eritrócitos/metabolismo , Humanos , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteostase/efeitos dos fármacos , Proteostase/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética
8.
mBio ; 6(1)2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25604792

RESUMO

UNLABELLED: Severe malarial anemia (SMA) in semi-immune individuals eliminates both infected and uninfected erythrocytes and is a frequent fatal complication. It is proportional not to circulating parasitemia but total parasite mass (sequestered) in the organs. Thus, immune responses that clear parasites in organs may trigger changes leading to anemia. Here, we use an outbred-rat model where increasing parasite removal in the spleen escalated uninfected-erythrocyte removal. Splenic parasite clearance was associated with activated CD8(+) T cells, immunodepletion of which prevented parasite clearance. CD8(+) T cell repletion and concomitant reduction of the parasite load was associated with exacerbated (40 to 60%) hemoglobin loss and changes in properties of uninfected erythrocytes. Together, these data suggest that CD8(+) T cell-dependent parasite clearance causes erythrocyte removal in the spleen and thus anemia. In children infected with the human malaria parasite Plasmodium falciparum, elevation of parasite biomass (not the number of circulating parasites) increased the odds ratio for SMA by 3.5-fold (95% confidence intervals [CI95%], 1.8- to 7.5-fold). CD8(+) T cell expansion/activation independently increased the odds ratio by 2.4-fold (CI95%, 1.0- to 5.7-fold). Concomitant increases in both conferred a 7-fold (CI95%, 1.9- to 27.4-fold)-greater risk for SMA. Together, these data suggest that CD8(+)-dependent parasite clearance may predispose individuals to uninfected-erythrocyte loss and SMA, thus informing severe disease diagnosis and strategies for vaccine development. IMPORTANCE: Malaria is a major global health problem. Severe malaria anemia (SMA) is a complex disease associated with partial immunity. Rapid hemoglobin reductions of 20 to 50% are commonly observed and must be rescued by transfusion (which can carry a risk of HIV acquisition). The causes and risk factors of SMA remain poorly understood. Recent studies suggest that SMA is linked to parasite biomass sequestered in organs. This led us to investigate whether immune mechanisms that clear parasites in organs trigger anemia. In rats, erythropoiesis is largely restricted to the bone marrow, and critical aspects of the spleen expected to be important in anemia are similar to those in humans. Therefore, using a rat model, we show that severe anemia is caused through CD8(+) T cell-dependent parasite clearance and erythrocyte removal in the spleen. CD8 activation may also be a new risk factor for SMA in African children.


Assuntos
Anemia/imunologia , Linfócitos T CD8-Positivos/imunologia , Eritrócitos/citologia , Malária Falciparum/complicações , Fagocitose , Plasmodium falciparum/fisiologia , Baço/imunologia , Anemia/etiologia , Anemia/metabolismo , Anemia/fisiopatologia , Animais , Morte Celular , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Hemoglobinas/metabolismo , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Ratos , Baço/parasitologia
9.
Malar J ; 13: 170, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24886496

RESUMO

BACKGROUND: Malaria in Cameroon is due to infections by Plasmodium falciparum and, to a lesser extent, Plasmodium malariae and Plasmodium ovale, but rarely Plasmodium vivax. A recent report suggested "Plasmodium vivax-like" infections around the study area that remained unconfirmed. Therefore, molecular and antigenic typing was used to investigate the prevalence of P. vivax and Duffy in asymptomatic adults resident in Bolifamba. METHODS: A cross-sectional study was conducted from July 2008 to October 2009. The status of all parasite species was determined by nested PCR in 269 blood samples collected. The P. falciparum and P. vivax anti-MSP/CSP antibody status of each subject was also determined qualitatively by a rapid card assay. Parasite DNA was extracted from a sample infected with three parasite species, purified and sequenced. The Duffy antigen status of 12 subjects infected with P. vivax was also determined by sequencing. In silico web-based tools were used to analyse sequence data for similarities and matches to reference sequences in public DNA databases. RESULTS: The overall malaria parasite prevalence in 269 individuals was 32.3% (87) as determined by PCR. Remarkably, 14.9% (13/87) of infections were caused either exclusively or concomitantly by P. vivax, established both by PCR and microscopic examination of blood smears, in individuals both positive (50%, 6/12) and negative (50%, 6/12) for the Duffy receptor. A triple infection by P. falciparum, P. vivax and P. malariae, was detected in one infected individual. Anti-MSP/CSP antibodies were detected in 72.1% (194/269) of samples, indicating high and continuous exposure to infection through mosquito bites. DISCUSSION: These data provide the first molecular evidence of P. vivax in Duffy positive and negative Cameroonians and suggest that there may be a significant prevalence of P. vivax infection than expected in the study area. Whether the P. vivax cases were imported or due to expansion of a founder effect was not investigated. Notwithstanding, the presence of P. vivax may complicate control efforts if these parasites become hypnozoitic or latent as the liver stage. CONCLUSIONS: These data strongly suggest that P. vivax is endemic to the south-west region of Cameroon and should be taken into account when designing malaria control strategies.


Assuntos
Doenças Assintomáticas/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Tipagem Molecular , Plasmodium/classificação , Plasmodium/isolamento & purificação , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Camarões/epidemiologia , Estudos Transversais , DNA de Protozoário/genética , Sistema do Grupo Sanguíneo Duffy/genética , Feminino , Humanos , Imunoensaio , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Prevalência , População Rural , Adulto Jovem
10.
Blood ; 124(2): 167-75, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24859359

RESUMO

Patients with severe malaria treated with artesunate sometimes experience a delayed hemolytic episode. Artesunate (AS) induces pitting, a splenic process whereby dead parasites are expelled from their host erythrocytes. These once-infected erythrocytes then return to the circulation. We analyzed hematologic parameters in 123 travelers treated with AS for severe malaria. Among 60 nontransfused patients observed for more than 8 days, 13 (22%) had delayed hemolysis. The peak concentration of circulating once-infected erythrocytes was measured during the first week in 21 patients and was significantly higher in 9 patients with delayed hemolysis than in 12 with other patterns of anemia (0.30 vs 0.07; P = .0001). The threshold of 180 million once-infected erythrocytes per liter discriminated patients with delayed hemolysis with 89% sensitivity and 83% specificity. Once-infected erythrocyte morphology analyzed by using ImageStream in 4 patients showed an 8.9% reduction in their projected area, an alteration likely contributing to their shorter lifespan. Delayed clearance of infected erythrocytes spared by pitting during AS treatment is an original mechanism of hemolytic anemia. Our findings consolidate a disease framework for posttreatment anemia in malaria in which delayed hemolysis is a new entity. The early concentration of once-infected erythrocytes is a solid candidate marker to predict post-AS delayed hemolysis.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Hemólise/efeitos dos fármacos , Malária Falciparum/diagnóstico , Malária Falciparum/tratamento farmacológico , Adulto , Anemia Hemolítica/induzido quimicamente , Anemia Hemolítica/parasitologia , Artesunato , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Feminino , Seguimentos , Humanos , Malária Falciparum/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Resultado do Tratamento , Adulto Jovem
11.
J Biol Chem ; 289(12): 8051-66, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24488491

RESUMO

Early diagnosis of neurological disorders would greatly improve their management and treatment. A major hurdle is that inflammatory products of cerebral disease are not easily detected in blood. Inflammation in multiple organs and heterogeneity in disease present additional challenges in distinguishing the extent to which a blood-based marker reflects disease in brain or other afflicted organs. Murine models of the monogenetic disorder Niemann-Pick Type C present aggressive forms of cerebral and liver inflammatory disease. Microarray analyses previously revealed age-dependent changes in innate immunity transcripts in the mouse brain. We have now validated four putative secretory inflammatory markers that are also elevated in mouse liver. We include limited, first time analysis of human Niemann-Pick Type C liver and cerebellum. Furthermore, we utilized 2-hydroxypropyl-ß-cyclodextrin (HPßCD, an emerging therapeutic) administered intraperitoneally in mice, which abrogates inflammatory pathology in the liver but has limited effect on the brain. By analyzing the corresponding effects on inflammatory plasma proteins, we identified cathepsin S as a lead indicator of liver disease. In contrast, lysozyme was a marker of both brain and liver disease. 2-Hydroxypropyl-ß-cyclodextrin had no effect on transcripts of neuron-specific 24-hydroxylase, and its product 24(S)-hydroxycholesterol was not a useful indicator in mouse plasma. Our data suggest that dual analysis of levels of the inflammatory markers lysozyme and cathepsin S may enable detection of multiple distinct states of neurodegeneration in plasma.


Assuntos
Catepsinas/análise , Catepsinas/sangue , Inflamação/sangue , Muramidase/sangue , Doença de Niemann-Pick Tipo C/sangue , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Catepsinas/imunologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muramidase/imunologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/imunologia , Doença de Niemann-Pick Tipo C/patologia , Proteínas/genética , beta-Ciclodextrinas/uso terapêutico
12.
Sci Rep ; 4: 3767, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24441939

RESUMO

The mechanisms underlying reduced red blood cell (RBC) deformability during Plasmodium falciparum (Pf) malaria remain poorly understood. Here, we explore the possible involvement of the L-arginine and nitric oxide (NO) pathway on RBC deformability in Pf-infected patients and parasite cultures. RBC deformability was reduced during the acute attack (day0) and returned to normal values upon convalescence (day28). Day0 values correlated with plasma L-arginine levels (r = 0.69; p = 0.01) and weakly with parasitemia (r = -0.38; p = 0.006). In vitro, day0 patient's plasma incubated with ring-stage cultures at 41°C reduced RBC deformability, and this effect correlated strongly with plasma L-arginine levels (r = 0.89; p < 0.0001). Moreover, addition of exogenous L-arginine to the cultures increased deformability of both Pf-free and trophozoite-harboring RBCs. NO synthase activity, evidenced in Pf-infected RBCs, induced L-arginine-dependent NO production. These data show that hypoargininemia during P. falciparum malaria may altogether impair NO production and reduce RBC deformability, particularly at febrile temperature.


Assuntos
Arginina/sangue , Deformação Eritrocítica , Eritrócitos/patologia , Malária Falciparum/sangue , Adulto , Arginina/deficiência , Arginina/metabolismo , Feminino , Humanos , Malária Falciparum/etiologia , Malária Falciparum/patologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Temperatura
13.
PLoS One ; 8(3): e60150, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23555907

RESUMO

Ex vivo perfusion of human spleens revealed innate retention of numerous cultured Plasmodium falciparum ring-infected red blood cells (ring-iRBCs). Ring-iRBC retention was confirmed by a microsphiltration device, a microbead-based technology that mimics the mechanical filtering function of the human spleen. However, the cellular alterations underpinning this retention remain unclear. Here, we use ImageStream technology to analyze infected RBCs' morphology and cell dimensions before and after fractionation with microsphiltration. Compared to fresh normal RBCs, the mean cell membrane surface area loss of trophozoite-iRBCs, ring-iRBCs and uninfected co-cultured RBCs (uRBCs) was 14.2% (range: 8.3-21.9%), 9.6% (7.3-12.2%) and 3.7% (0-8.4), respectively. Microsphilters retained 100%, ∼50% and 4% of trophozoite-iRBCs, ring-iRBCs and uRBCs, respectively. Retained ring-iRBCs display reduced surface area values (estimated mean, range: 17%, 15-18%), similar to the previously shown threshold of surface-deficient RBCs retention in the human spleen (surface area loss: >18%). By contrast, ring-iRBCs that successfully traversed microsphilters had minimal surface area loss and normal sphericity, suggesting that these parameters are determinants of their retention. To confirm this hypothesis, fresh normal RBCs were exposed to lysophosphatidylcholine to induce a controlled loss of surface area. This resulted in a dose-dependent retention in microsphilters, with complete retention occurring for RBCs displaying >14% surface area loss. Taken together, these data demonstrate that surface area loss and resultant increased sphericity drive ring-iRBC retention in microsphilters, and contribute to splenic entrapment of a subpopulation of ring-iRBCs. These findings trigger more interest in malaria research fields, including modeling of infection kinetics, estimation of parasite load, and analysis of risk factors for severe clinical forms. The determination of the threshold of splenic retention of ring-iRBCs has significant implications for diagnosis (spleen functionality) and drug treatment (screening of adjuvant therapy targeting ring-iRBCs).


Assuntos
Eritrócitos/citologia , Eritrócitos/parasitologia , Plasmodium falciparum/patogenicidade , Baço/citologia , Forma Celular/efeitos dos fármacos , Células Cultivadas , Eritrócitos/efeitos dos fármacos , Humanos , Lisofosfatidilcolinas/farmacologia
14.
Methods Mol Biol ; 923: 291-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22990786

RESUMO

The altered deformability of erythrocytes infected with Plasmodium falciparum is central in malaria -pathogenesis, as it influences the hemodynamic properties of the infected cell and its retention in the spleen. Exported parasite proteins, as well as the shape and volume of the parasite itself, influence the deformability of the infected erythrocyte. To explore changes in erythrocyte deformability, we have developed a new method, called microsphiltration, based on filtration of erythrocytes through a mixture of metal microspheres that mimic the geometry of inter-endothelial splenic slits. As P. falciparum develops in its host cell, the retention rates observed in microspheres correlate with the progressive decrease of erythrocyte deformability and with the retention rates in the spleen. The yields of microsphiltration separation allow for molecular analyses of subpopulations with distinct mechanical phenotypes.


Assuntos
Deformação Eritrocítica , Eritrócitos/parasitologia , Filtração/métodos , Malária Falciparum/sangue , Microesferas , Eritrócitos/patologia , Filtração/instrumentação , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento
15.
PLoS One ; 7(10): e48273, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23094108

RESUMO

Niemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/-) mice relative to Npc1(+/-) at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/-) as well as Balb/c Npc1(nmf164) mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/-) mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/-) spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto not associated with NPC) suggests their role in pathophysiology and disease exacerbation.


Assuntos
Envelhecimento/genética , Expressão Gênica , Muramidase/genética , Doença de Niemann-Pick Tipo C/genética , Proteínas/genética , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Biomarcadores/sangue , Encéfalo/imunologia , Encéfalo/metabolismo , Progressão da Doença , Feminino , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/imunologia , Fígado/metabolismo , Lisossomos/genética , Lisossomos/imunologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Muramidase/sangue , Mutação , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/imunologia , Doença de Niemann-Pick Tipo C/patologia , Proteínas/imunologia , Proteínas/metabolismo , Baço/imunologia , Baço/metabolismo
16.
Blood ; 120(2): 424-30, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22510876

RESUMO

Splenic sequestration of RBCs with reduced surface area and cellular deformability has long been recognized as contributing to pathogenesis of several RBC disorders, including hereditary spherocytosis. However, the quantitative relationship between the extent of surface area loss and splenic entrapment remains to be defined. To address this issue, in the present study, we perfused ex vivo normal human spleens with RBCs displaying various degrees of surface area loss and monitored the kinetics of their splenic retention. Treatment with increasing concentrations of lysophosphatidylcholine resulted in a dose-dependent reduction of RBC surface area at constant volume, increased osmotic fragility, and decreased deformability. The degree of splenic retention of treated RBCs increased with increasing surface area loss. RBCs with a > 18% average surface area loss (> 27% reduced surface area-to-volume ratio) were rapidly and completely entrapped in the spleen. Surface-deficient RBCs appeared to undergo volume loss after repeated passages through the spleen and escape from splenic retention. The results of the present study for the first time define the critical extent of surface area loss leading to splenic entrapment and identify an adaptive volume regulation mechanism that allows spherocytic RBCs to prolong their life span in circulation. These results have significant implications for understanding the clinical heterogeneity of RBC membrane disorders.


Assuntos
Esferócitos/patologia , Esferócitos/fisiologia , Baço/citologia , Baço/fisiologia , Idoso , Deformação Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/patologia , Feminino , Humanos , Técnicas In Vitro , Lisofosfatidilcolinas/farmacologia , Masculino , Pessoa de Meia-Idade , Fragilidade Osmótica/efeitos dos fármacos , Perfusão , Esferócitos/efeitos dos fármacos , Esferocitose Hereditária/sangue , Esferocitose Hereditária/etiologia
17.
Eur Respir J ; 40(6): 1401-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22523353

RESUMO

We tested the effect of acetazolamide on blood mechanical properties and pulmonary vascular resistance (PVR) during chronic hypoxia. Six groups of rats were either treated or not treated with acetazolamide (curative: treated after 10 days of hypoxic exposure; preventive: treated before hypoxic exposure with 40 mg · kg(-1) · day(-1)) and either exposed or not exposed to 3 weeks of hypoxia (at altitude >5,500 m). They were then used to assess the role of acetazolamide on pulmonary artery pressure, cardiac output, blood volume, haematological and haemorheological parameters. Chronic hypoxia increased haematocrit, blood viscosity and PVR, and decreased cardiac output. Acetazolamide treatment in hypoxic rats decreased haematocrit (curative by -10% and preventive by -11%), PVR (curative by -36% and preventive by -49%) and right ventricular hypertrophy (preventive -20%), and increased cardiac output (curative by +60% and preventive by +115%). Blood viscosity was significantly decreased after curative acetazolamide treatment (-16%) and was correlated with PVR (r=0.87, p<0.05), suggesting that blood viscosity could influence pulmonary haemodynamics. The fall in pulmonary vascular hindrance (curative by -27% and preventive by -45%) after treatment suggests that acetazolamide could decrease pulmonary vessels remodelling under chronic hypoxia. The effect of acetazolamide is multifactorial by acting on erythropoiesis, pulmonary circulation, haemorheological properties and cardiac output, and could represent a pertinent treatment of chronic mountain sickness.


Assuntos
Acetazolamida/farmacologia , Hipóxia/fisiopatologia , Doença da Altitude/terapia , Animais , Viscosidade Sanguínea , Volume Sanguíneo , Inibidores da Anidrase Carbônica/farmacologia , Doença Crônica , Coração/fisiologia , Hematócrito , Hemodinâmica , Hemorreologia , Concentração de Íons de Hidrogênio , Hipertensão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Circulação Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Estresse Mecânico
18.
Blood ; 119(2): e1-8, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22106347

RESUMO

Infection of erythrocytes with the human malaria parasite, Plasmodium falciparum, results in dramatic changes to the host cell structure and morphology. The predicted functional localization of the STEVOR proteins at the erythrocyte surface suggests that they may be involved in parasite-induced modifications of the erythrocyte membrane during parasite development. To address the biologic function of STEVOR proteins, we subjected a panel of stevor transgenic parasites and wild-type clonal lines exhibiting different expression levels for stevor genes to functional assays exploring parasite-induced modifications of the erythrocyte membrane. Using this approach, we show that stevor expression impacts deformability of the erythrocyte membrane. This process may facilitate parasite sequestration in deep tissue vasculature.


Assuntos
Antígenos de Protozoários/metabolismo , Membrana Eritrocítica/patologia , Eritrócitos/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Antígenos de Protozoários/genética , Células Cultivadas , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/parasitologia , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Plasmodium falciparum/isolamento & purificação , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 6(9): e25477, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980474

RESUMO

Malaria parasites induce complex cellular and clinical phenotypes, including anemia, cerebral malaria and death in a wide range of mammalian hosts. Host genes and parasite 'toxins' have been implicated in malarial disease, but the contribution of parasite genes remains to be fully defined. Here we assess disease in BALB/c mice and Wistar rats infected by the rodent malaria parasite Plasmodium berghei with a gene knock out for merozoite surface protein (MSP) 7. MSP7 is not essential for infection but in P. falciparum, it enhances erythrocyte invasion by 20%. In vivo, as compared to wild type, the P. berghei Δmsp7 mutant is associated with an abrogation of death and a decrease from 3% to 2% in peak, circulating parasitemia. The Δmsp7 mutant is also associated with less anemia and modest increase in the size of follicles in the spleen. Together these data show that deletion of a single parasite invasion ligand modulates blood stage disease, as measured by death and anemia. This work is the first to assess the contribution of a gene present in all plasmodial species in severe disease.


Assuntos
Anemia/parasitologia , Deleção de Genes , Malária/parasitologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/genética , Anemia/sangue , Anemia/patologia , Animais , Citocinas/sangue , Técnicas de Inativação de Genes , Masculino , Camundongos , Ratos , Taxa de Sobrevida
20.
Blood ; 118(19): 5071-9, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21885599

RESUMO

In vitro RBC production from stem cells could represent an alternative to classic transfusion products. Until now the clinical feasibility of this concept has not been demonstrated. We addressed the question of the capacity of cultured RBCs (cRBCs) to survive in humans. By using a culture protocol permitting erythroid differentiation from peripheral CD34(+) HSC, we generated a homogeneous population of cRBC functional in terms of their deformability, enzyme content, capacity of their hemoglobin to fix/release oxygen, and expression of blood group antigens. We then demonstrated in the nonobese diabetes/severe combined immunodeficiency mouse that cRBC encountered in vivo the conditions necessary for their complete maturation. These data provided the rationale for injecting into one human a homogeneous sample of 10(10) cRBCs generated under good manufacturing practice conditions and labeled with (51)Cr. The level of these cells in the circulation 26 days after injection was between 41% and 63%, which compares favorably with the reported half-life of 28 ± 2 days for native RBCs. Their survival in vivo testifies globally to their quality and functionality. These data establish the proof of principle for transfusion of in vitro-generated RBCs and path the way toward new developments in transfusion medicine. This study is registered at http://www.clinicaltrials.gov as NCT0929266.


Assuntos
Transfusão de Eritrócitos/métodos , Animais , Antígenos CD34/sangue , Antígenos de Grupos Sanguíneos/sangue , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Envelhecimento Eritrocítico , Deformação Eritrocítica , Eritrócitos/citologia , Eritrócitos/imunologia , Eritrócitos/metabolismo , Eritropoese , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Hemoglobinas/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...