Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 12(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481497

RESUMO

Nutritional changes during developmental windows are of particular concern in offspring metabolic disease. Questions are emerging concerning the role of maternal weight changes before conception, particularly for weight loss, in the development of diet-related disorders. Understanding the physiological pathways affected by the maternal trajectories in the offspring is therefore essential, but a broad overview is still lacking. We recently reported both metabolic and behavioral negative outcomes in offspring born to obese or weight-loss mothers and fed a control of high-fat diet, suggesting long-term modeling of metabolic pathways needing to be further characterized. Using non-targeted LC-HRMS, we investigated the impact of maternal and post-weaning metabolic status on the adult male offspring's metabolome in three tissues involved in energy homeostasis: liver, hypothalamus and olfactory bulb. We showed that post-weaning diet interfered with the abundance of several metabolites, including 1,5-anhydroglucitol, saccharopine and ßhydroxybutyrate, differential in the three tissues. Moreover, maternal diet had a unique impact on the abundance of two metabolites in the liver. Particularly, anserine abundance, lowered by maternal obesity, was normalized by a preconceptional weight loss, whatever the post-weaning diet. This study is the first to identify a programming long-term effect of maternal preconception obesity on the offspring metabolome.


Assuntos
Encéfalo/metabolismo , Dieta , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Troca Materno-Fetal/fisiologia , Metaboloma , Obesidade Materna/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Desmame , Ácido 3-Hidroxibutírico/metabolismo , Animais , Anserina/metabolismo , Desoxiglucose/metabolismo , Metabolismo Energético , Feminino , Homeostase , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Gravidez
2.
Semin Cell Dev Biol ; 97: 172-180, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587964

RESUMO

The literature about Developmental Origins of Health and Disease (DOHaD) studies is considerably growing. Maternal and paternal environment, during all the development of the individual from gametogenesis to weaning and beyond, as well as the psychosocial environment in childhood and teenage, can shape the adult and the elderly person's susceptibility to her/his own environment and diseases. This non-conventional, non-genetic, inheritance is underlain by several mechanisms among which epigenetics is obviously central, due to the notion of memory of early decisional events during development even when this stimulus is gone, that is implied in Waddington's developmental concept. This review first summarizes the different mechanisms by which the environment can model the epigenome: receptor signalling, energy metabolism and signal mechanotransduction from extracellular matrix to chromatin. Then an overview of the epigenetic changes in response to maternal environment during the vulnerability time windows, gametogenesis, early development, placentation and foetal growth, and postnatal period, is described, with the specific example of overnutrition and food deprivation. The implication of epigenetics in DOHaD is obvious, however the precise causal chain from early environment to the epigenome modifications to the phenotype still needs to be deciphered.


Assuntos
Doença/genética , Epigenoma/genética , Epigenômica/métodos , Predisposição Genética para Doença , Humanos , Pais , Fenótipo , Transdução de Sinais
3.
Nutrients ; 11(5)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31035463

RESUMO

According to the "developmental origins of health and disease" (DOHaD) concept, maternal obesity predisposes the offspring to non-communicable diseases in adulthood. While a preconceptional weight loss (WL) is recommended for obese women, its benefits on the offspring have been poorly addressed. We evaluated whether preconceptional WL was able to reverse the adverse effects of maternal obesity in a mouse model, exhibiting a modification of foetal growth and of the expression of genes encoding epigenetic modifiers in liver and placenta. We tracked metabolic and olfactory behavioural trajectories of offspring born to control, obese or WL mothers. After weaning, the offspring were either put on a control diet (CD) or a high-fat (HFD). After only few weeks of HFD, the offspring developed obesity, metabolic alterations and olfactory impairments, independently of maternal context. However, male offspring born to obese mother gained even more weight under HFD than their counterparts born to lean mothers. Preconceptional WL normalized the offspring metabolic phenotypes but had unexpected effects on olfactory performance: a reduction in olfactory sensitivity, along with a lack of fasting-induced, olfactory-based motivation. Our results confirm the benefits of maternal preconceptional WL for male offspring metabolic health but highlight some possible adverse outcomes on olfactory-based behaviours.


Assuntos
Metabolismo Energético/fisiologia , Obesidade/metabolismo , Olfato/fisiologia , Redução de Peso , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Fertilização , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mães , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA