Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(2): e0103323, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206023

RESUMO

This study reports the whole-genome sequence of an endosymbiotic bacteria Bosea sp. strain 685, which was isolated from the root nodule of Astragalus umbellatus Bunge. in the Kamchatka Peninsula, Russia. The genome consists of one chromosome and one plasmid with a total length of 6,795,213 bp and 65.37% of GC content.

2.
Microbiol Resour Announc ; 12(11): e0022723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905923

RESUMO

The Shulgan-Tash (Kapova) cave is a unique object for scientific research. In this article, we report the draft genome sequence of Janibacter limosus strain P1(28)-3 (RCAM05316) isolated from cave lime mud, Russia (53° 2' 0″ N, 57° 3' 0″ E). The sequence was obtained using Oxford Nanopore Technologies MinION.

3.
Microorganisms ; 11(5)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37317180

RESUMO

Combined inoculation of legumes with rhizobia and plant growth-promoting rhizobacteria or endophytes is a known technique for increasing the efficiency of nitrogen-fixing symbiosis and plant productivity. The aim of this work was to expand knowledge about the synergistic effects between commercial rhizobia of pasture legumes and root nodule bacteria of relict legume species. Pot experiments were performed on common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.) co-inoculated with the participation of the corresponding commercial rhizobial strains (R. leguminosarum bv. viciae RCAM0626 and R. leguminosarum bv. trifolii RCAM1365) and seven strains isolated from nodules of relict legumes inhabiting the Baikal Lake region and the Altai Republic: Oxytropis popoviana, Astragalus chorinensis, O. tragacanthoides and Vicia costata. The inoculation of plants with combinations of strains (commercial strain plus the isolate from relict legume) had a different effect on symbiosis depending on the plant species: the increase in the number of nodules was mainly observed on vetch, whereas increased acetylene reduction activity was evident on clover. It was shown that the relict isolates differ significantly in the set of genes related to different genetic systems that affect plant-microbe interactions. At the same time, they had additional genes that are involved in the formation of symbiosis and determine its effectiveness, but are absent in the used commercial strains: symbiotic genes fix, nif, nod, noe and nol, as well as genes associated with the hormonal status of the plant and the processes of symbiogenesis (acdRS, genes for gibberellins and auxins biosynthesis, genes of T3SS, T4SS and T6SS secretion systems). It can be expected that the accumulation of knowledge about microbial synergy on the example of the joint use of commercial and relict rhizobia will allow in the future the development of methods for the targeted selection of co-microsymbionts to increase the efficiency of agricultural legume-rhizobia systems.

4.
Plants (Basel) ; 12(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375958

RESUMO

It is well known that plant-growth-promoting rhizobacteria (PGPRs) increase the tolerance of plants to abiotic stresses; however, the counteraction of Al toxicity has received little attention. The effects of specially selected Al-tolerant and Al-immobilizing microorganisms were investigated using pea cultivar Sparkle and its Al-sensitive mutant E107 (brz). The strain Cupriavidus sp. D39 was the most-efficient in the growth promotion of hydroponically grown peas treated with 80 µM AlCl3, increasing the plant biomass of Sparkle by 20% and of E107 (brz) by two-times. This strain immobilized Al in the nutrient solution and decreased its concentration in E107 (brz) roots. The mutant showed upregulated exudation of organic acids, amino acids, and sugars in the absence or presence of Al as compared with Sparkle, and in most cases, the Al treatment stimulated exudation. Bacteria utilized root exudates and more actively colonized the root surface of E107 (brz). The exudation of tryptophan and the production of IAA by Cupriavidus sp. D39 in the root zone of the Al-treated mutant were observed. Aluminum disturbed the concentrations of nutrients in plants, but inoculation with Cupriavidus sp. D39 partially restored such negative effects. Thus, the E107 (brz) mutant is a useful tool for studying the mechanisms of plant-microbe interactions, and PGPR plays an important role in protecting plants against Al toxicity.

5.
Microbiol Resour Announc ; 12(6): e0028723, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37166320

RESUMO

This study reports the whole-genome sequence of an endosymbiotic bacterium, Rhizobium sp. strain 32-5/1, isolated from root nodules of the legume Vicia cracca L. in the Arctic region of Russia. The genome consists of two plasmids and one chromosome, with a total length of 5,621,108 bp and 59.5% GC content.

6.
Microbiol Resour Announc ; 12(6): e0014123, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37184420

RESUMO

The complete genome sequence of Sphingomonas sp. strain 7/4-4, which was isolated from the root nodule of the circumpolar legume Astragalus tugarinovii Basil, is reported. The assembly contains 4,423,370 bp in 1 circular chromosome, with a GC content of 65.94%. The genome sequence of strain 7/4-4 could provide insights into the metabolic potential of Arctic rhizobacteria.

7.
Microbiol Resour Announc ; 12(6): e0007123, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37140365

RESUMO

Here, we present the draft genome sequence of Rhizobium sp. strain RCAM05973 which was isolated from a Cyamopsis tetragonoloba (guar) root nodule. The genome contains 6,937,221 bp in 2 contigs and has a GC content of 60%.

8.
Microbiol Resour Announc ; 12(4): e0135422, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36943044

RESUMO

We report the draft genome sequence of Cupriavidus sp. strain D39, associated with the roots of pea plants. The genome is characterized by a GC content of 63.62% and a total length of 7.7 Mbp and contains several putative genes associated with resistance to metals and plant growth promotion.

9.
Microbiol Resour Announc ; 12(3): e0001323, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36840578

RESUMO

Microorganisms of extremely cold habitats are unique objects for studying their biogeochemical properties and mechanisms. Here, we present the complete genome sequence of the strain Rhodopseudomonas sp. P2A-2r, isolated from arctic soil in Svalbard, Norway. The genome consists of a 6.7-Mbp circular chromosome.

10.
Microbiol Resour Announc ; 12(2): e0116022, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36633429

RESUMO

In this article, we report the complete genome sequences of Massilia sp. strains B-10 (RCAM05335) and H-1 (RCAM05339), which were isolated from the water of the Dal'nee Verkhnee Lake in the Shulgan-Tash cave in Russia (53°2'0″N, 57°3'0″E). The sequences were obtained using an Oxford Nanopore Technologies MinION system.

11.
Microbiol Resour Announc ; 12(2): e0112022, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36688677

RESUMO

Permafrost is an extremely cold ecosystem that is inhabited by microorganisms with unique biochemical properties for potential biotechnological applications. Here, we present the complete genome sequence of Glutamicibacter sp. strain M10, which was isolated from a permafrost sample that had been collected at a depth of 2 m in West Spitsbergen, Norway.

12.
Methods Protoc ; 5(6)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36548141

RESUMO

A single universal open protocol RIAM (named after Research Institute for Agricultural Microbiology) for the isolation of high purity DNA from different types of soils and other substrates (high and low in humic, clay content, organic fertilizer, etc.) is proposed. The main features of the RIAM protocol are the absence of the sorption-desorption stage on silica columns, the use of high concentrations of phosphate in buffers, which prevents DNA sorption on minerals, and DNA precipitation using CTAB. The performance of RIAM was compared with a reference commercial kit and showed very good results in relation to the purity and quantity of DNA, as well as the absence of inhibitory activity on PCR. In all cases, the RIAM ensured the isolation of DNA in quantities much greater than the commercial kit without the effect of PCR inhibition up to 50 ng DNA per reaction in a volume of 15 µL. The latter circumstance along with the ability of the protocol to extract low molecular weight DNA fractions makes the method especially suitable for those cases where quantitative assessments, detection of minor components of soil microbiota, and completeness of isolation of all DNA fractions are required.

13.
Plants (Basel) ; 11(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432739

RESUMO

Drought and heavy metals seriously affect plant growth and the biodiversity of the associated rhizosphere microbiomes, which, in turn, could be involved in the adaptation of plants to these environmental stresses. Rhizosphere soil was collected from a three-factor pot experiment, where pea line SGE and its Cd-tolerant mutant SGECdt were cultivated under both optimal and limited water conditions and treated with a toxic Cd concentration. The taxonomic structure of the prokaryotic rhizosphere microbiome was analyzed with the high-throughput sequencing of 16S rRNA amplicon libraries. A permutation test demonstrated statistically significant effects of Cd and water stress but not of pea genotype on the rhizosphere microbiome structure. Phylogenetic isometric log-ratio data transformation identified the taxonomic balances that were affected by abiotic factors and pea genotypes. A small number of significant (log ratio [-3.0:+3.0]) and phylogenetically deep balances characterized water stress, while a larger number of weak (log ratio [-0.8:+0.8]) phylogenetically lower balances described the influence of the plant genotype. Stress caused by cadmium took on an intermediate position. The main conclusion of the study is that the most powerful factor affecting the rhizosphere microbiome was water stress, and the weakest factor was plant genotype since it demonstrated a very weak transformation of the taxonomic structure of rhizosphere microbiomes in terms of alpha diversity indices, beta diversity, and the log ratio values of taxonomic balances.

14.
Biomolecules ; 12(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291718

RESUMO

We report the discovery of a new abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism by the rhizosphere bacterium Rhodococcus sp. P1Y. Analogue of (+)-ABA, enriched in tritium in the cyclohexene moiety, was fed in bacterial cells, and extracts containing radioactive metabolites were purified and analyzed to determine their structure. We obtained mass spectral fragmentation patterns and nuclear magnetic resonance spectra of a new metabolite of ABA identified as 1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexene-1-acetic acid, which we named rhodococcal acid (RA) and characterized using several other techniques. This metabolite is the second bacterial ABA degradation product in addition to dehydrovomifoliol that we described earlier. Taken together, these data reveal an unknown ABA catabolic pathway that begins with side chain disassembly, as opposed to the conversion of the cyclohexene moiety in plants. The role of ABA-utilizing bacteria in interactions with other microorganisms and plants is also discussed.


Assuntos
Ácido Abscísico , Ácido Acético , Ácido Abscísico/metabolismo , Trítio , Transformação Bacteriana , Extratos Vegetais
15.
Microbiol Resour Announc ; 11(10): e0056922, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36154192

RESUMO

The Shulgan-Tash cave is an extremely interesting object for scientific research, located in the Republic of Bashkortostan (Russia). In this article, we report the complete genome sequence of Rhizobium sp. strain RCAM05350 isolated from the "cave silver" biofilms. The sequence was obtained using Oxford Nanopore Technologies MinION.

16.
Plants (Basel) ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145816

RESUMO

High soil acidity is one of the main unfavorable soil factors that inhibit the growth and mineral nutrition of plants. This is largely due to the toxicity of aluminum (Al), the mobility of which increases significantly in acidic soils. Symbiotic microorganisms have a wide range of beneficial properties for plants, protecting them against abiotic stress factors. This report describes the mechanisms of positive effects of plant growth-promoting rhizobacteria Pseudomonas fluorescens SPB2137 on four pea (Pisum sativum L.) genotypes grown in hydroponics and treated with 80 µM AlCl3. In batch culture, the bacteria produced auxins, possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, alkalized the medium and immobilized Al, forming biofilm-like structures and insoluble phosphates. Inoculation with Ps. fluorescens SPB2137 increased root and/or shoot biomass of Al-treated plants. The bacteria alkalized the nutrient solution and transferred Al from the solution to the residue, which contained phosphorus that was exuded by roots. As a result, the Al concentration in roots decreased, while the amount of precipitated Al correlated negatively with its concentration in the solution, positively with the solution pH and negatively with Al concentration in roots and shoots. Treatment with Al induced root exudation of organic acids, amino acids and sugars. The bacteria modulated root exudation via utilization and/or stimulation processes. The effects of Al and bacteria on plants varied depending on pea genotype, but all the effects had a positive direction and the variability was mostly quantitative. Thus, Ps. fluorescens SPB2137 improved the Al tolerance of pea due to immobilization and exclusion of toxicants from the root zone.

17.
Biomolecules ; 12(2)2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35204731

RESUMO

Inoculation with plant growth-promoting rhizobacteria can increase plant salt resistance. We aimed to reveal bacterial effects on the formation of apoplastic barriers and hormone concentration in relation to maintaining ion homeostasis and growth of salt-stressed plants. The rhizosphere of a durum wheat variety was inoculated with cytokinin-producing Bacillus subtilis and auxin-producing Pseudomonas mandelii strains. Plant growth, deposition of lignin and suberin and concentrations of sodium, potassium, phosphorus and hormones were studied in the plants exposed to salinity. Accumulation of sodium inhibited plant growth accompanied by a decline in potassium in roots and phosphorus in shoots of the salt-stressed plants. Inoculation with both bacterial strains resulted in faster appearance of Casparian bands in root endodermis and an increased growth of salt-stressed plants. B. subtilis prevented the decline in both potassium and phosphorus concentrations and increased concentration of cytokinins in salt-stressed plants. P. mandelii decreased the level of sodium accumulation and increased the concentration of auxin. Growth promotion was greater in plants inoculated with B. subtilis. Increased ion homeostasis may be related to the capacity of bacteria to accelerate the formation of Casparian bands preventing uncontrolled diffusion of solutes through the apoplast. We discuss the relative impacts of the decline in Na accumulation and maintenance of K and P content for growth improvement of salt-stressed plants and their possible relation to the changes in hormone concentration in plants.


Assuntos
Tolerância ao Sal , Triticum , Homeostase , Reguladores de Crescimento de Plantas/farmacologia , Rizosfera
18.
Biomolecules ; 11(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668728

RESUMO

The phytohormone abscisic acid (ABA) plays an important role in plant growth and in response to abiotic stress factors. At the same time, its accumulation in soil can negatively affect seed germination, inhibit root growth and increase plant sensitivity to pathogens. ABA is an inert compound resistant to spontaneous hydrolysis and its biological transformation is scarcely understood. Recently, the strain Rhodococcus sp. P1Y was described as a rhizosphere bacterium assimilating ABA as a sole carbon source in batch culture and affecting ABA concentrations in plant roots. In this work, the intermediate product of ABA decomposition by this bacterium was isolated and purified by preparative HPLC techniques. Proof that this compound belongs to ABA derivatives was carried out by measuring the molar radioactivity of the conversion products of this phytohormone labeled with tritium. The chemical structure of this compound was determined by instrumental techniques including high-resolution mass spectrometry, NMR spectrometry, FTIR and UV spectroscopies. As a result, the metabolite was identified as (4RS)-4-hydroxy-3,5,5-trimethyl-4-[(E)-3-oxobut-1-enyl]cyclohex-2-en-1-one (dehydrovomifoliol). Based on the data obtained, it was concluded that the pathway of bacterial degradation and assimilation of ABA begins with a gradual shortening of the acyl part of the molecule.


Assuntos
Ácido Abscísico/metabolismo , Cicloexanonas/metabolismo , Rizosfera , Rhodococcus/metabolismo , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Reguladores de Crescimento de Plantas/metabolismo
19.
Plants (Basel) ; 9(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353122

RESUMO

Aluminium being one of the most abundant elements is very toxic for plants causing inhibition of nutrient uptake and productivity. The aim of this study was to evaluate the potential of microbial consortium consisting of arbuscular mycorrhizal fungus (AMF), rhizobia and PGPR for counteracting negative effects of Al toxicity on four pea genotypes differing in Al tolerance. Pea plants were grown in acid soil supplemented with AlCl3 (pHKCl = 4.5) or neutralized with CaCO3 (pHKCl = 6.2). Inoculation increased shoot and/or seed biomass of plants grown in Al-supplemented soil. Nodule number and biomass were about twice on roots of Al-treated genotypes after inoculation. Inoculation decreased concentrations of water-soluble Al in the rhizosphere of all genotypes grown in Al-supplemented soil by about 30%, improved N2 fixation and uptake of fertilizer 15N and nutrients from soil, and increased concentrations of water-soluble nutrients in the rhizosphere. The structure of rhizospheric microbial communities varied to a greater extent depending on the plant genotype, as compared to soil conditions and inoculation. Thus, this study highlights the important role of symbiotic microorganisms and the plant genotype in complex interactions between the components of the soil-microorganism-plant continuum subjected to Al toxicity.

20.
Plants (Basel) ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752090

RESUMO

Cadmium (Cd) is one of the most widespread and toxic soil pollutants that inhibits plant growth and microbial activity. Polluted soils can be remediated using plants that either accumulate metals (phytoextraction) or convert them to biologically inaccessible forms (phytostabilization). The phytoremediation potential of a symbiotic system comprising the Cd-tolerant pea (Pisum sativum L.) mutant SGECdt and selected Cd-tolerant microorganisms, such as plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2, nodule bacterium Rhizobium leguminosarum bv. viciae RCAM1066, and arbuscular mycorrhizal fungus Glomus sp. 1Fo, was evaluated in comparison with wild-type pea SGE and the Cd-accumulating plant Indian mustard (Brassica juncea L. Czern.) VIR263. Plants were grown in pots in sterilized uncontaminated or Cd-supplemented (15 mg Cd kg-1) soil and inoculated or not with the microbial consortium. Cadmium significantly inhibited growth of uninoculated and particularly inoculated SGE plants, but had no effect on SGECdt and decreased shoot biomass of B. juncea. Inoculation with the microbial consortium more than doubled pea biomass (both genotypes) irrespective of Cd contamination, but had little effect on B. juncea biomass. Cadmium decreased nodule number and acetylene reduction activity of SGE by 5.6 and 10.8 times, whereas this decrease in SGECdt was 2.1 and 2.8 times only, and the frequency of mycorrhizal structures decreased only in SGE roots. Inoculation decreased shoot Cd concentration and increased seed Cd concentration of both pea genotypes, but had little effect on Cd concentration of B. juncea. Inoculation also significantly increased concentration and/or accumulation of nutrients (Ca, Fe, K, Mg, Mn, N, P, S, and Zn) by Cd-treated pea plants, particularly by the SGECdt mutant. Shoot Cd concentration of SGECdt was twice that of SGE, and the inoculated SGECdt had approximately similar Cd accumulation capacity as compared with B. juncea. Thus, plant-microbe systems based on Cd-tolerant micro-symbionts and plant genotypes offer considerable opportunities to increase plant HM tolerance and accumulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...