Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(21): eadk2149, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781326

RESUMO

Understanding the genetic programs that drive neuronal diversification into classes and subclasses is key to understand nervous system development. All neurons can be classified into two types: commissural and ipsilateral, based on whether their axons cross the midline or not. However, the gene regulatory program underlying this binary division is poorly understood. We identified a pair of basic helix-loop-helix transcription factors, Nhlh1 and Nhlh2, as a global transcriptional mechanism that controls the laterality of all floor plate-crossing commissural axons in mice. Mechanistically, Nhlh1/2 play an essential role in the expression of Robo3, the key guidance molecule for commissural axon projections. This genetic program appears to be evolutionarily conserved in chick. We further discovered that Isl1, primarily expressed in ipsilateral neurons within neural tubes, negatively regulates the Robo3 induction by Nhlh1/2. Our findings elucidate a gene regulatory strategy where a conserved global mechanism intersects with neuron class-specific regulators to control the partitioning of neurons based on axon laterality.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica no Desenvolvimento , Neurônios , Animais , Neurônios/metabolismo , Neurônios/citologia , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Axônios/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Embrião de Galinha , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Redes Reguladoras de Genes
2.
Structure ; 32(3): 263-272.e7, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38228146

RESUMO

SARS-CoV-2 rapidly mutates and acquires resistance to neutralizing antibodies. We report an in-silico-designed antibody that restores the neutralizing activity of a neutralizing antibody. Our previously generated antibody, UT28K, exhibited broad neutralizing activity against mutant variants; however, its efficacy against Omicron BA.1 was compromised by the mutation. Using previously determined structural information, we designed a modified-UT28K (VH T28R/N57D), UT28K-RD targeting the mutation site. In vitro and in vivo experiments demonstrated the efficacy of UT28K-RD in neutralizing Omicron BA.1. Although the experimentally determined structure partially differed from the predicted model, our study serves as a successful case of antibody design, wherein the predicted amino acid substitution enhanced the recognition of the previously elusive Omicron BA.1. We anticipate that numerous similar cases will be reported, showcasing the potential of this approach for improving protein-protein interactions. Our findings will contribute to the development of novel therapeutic strategies for highly mutable viruses, such as SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Anticorpos Antivirais , Anticorpos Neutralizantes , Mutação , Anticorpos Monoclonais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA