Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202317064, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769756

RESUMO

Nanoelectromechanical systems (NEMS)-based mass spectrometry (MS) is an emerging technique that enables determination of the mass of individual adsorbed particles, by driving nanomechanical devices at resonance and monitoring the real-time changes in their resonance frequencies induced by each single molecule adsorption event. We incorporate NEMS into an Orbitrap mass spectrometer and report our progress towards leveraging the single-molecule capabilities of the NEMS to enhance the dynamic range of conventional MS instrumentation and to offer new capabilities for performing deep proteomic analysis of clinically relevant samples. We use the hybrid instrument to deliver E. coli GroEL molecules (801 kDa) to the NEMS devices in their native, intact state. Custom ion optics are used to focus the beam down to 40 µm diameter with a maximum flux of 25 molecules/second. The mass spectrum obtained with NEMS-MS shows good agreement with the known mass of GroEL.

2.
Nat Commun ; 9(1): 3283, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115919

RESUMO

One of the main challenges to overcome to perform nanomechanical mass spectrometry analysis in a practical time frame stems from the size mismatch between the analyte beam and the small nanomechanical detector area. We report here the demonstration of mass spectrometry with arrays of 20 multiplexed nanomechanical resonators; each resonator is designed with a distinct resonance frequency which becomes its individual address. Mass spectra of metallic aggregates in the MDa range are acquired with more than one order of magnitude improvement in analysis time compared to individual resonators. A 20 NEMS array is probed in 150 ms with the same mass limit of detection as a single resonator. Spectra acquired with a conventional time-of-flight mass spectrometer in the same system show excellent agreement. We also demonstrate how mass spectrometry imaging at the single-particle level becomes possible by mapping a 4-cm-particle beam in the MDa range and above.

3.
F1000Res ; 7: 800, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983926

RESUMO

Cytoscape is the premiere platform for interactive analysis, integration and visualization of network data. While Cytoscape itself delivers much basic functionality, it relies on community-written apps to deliver specialized functions and analyses. To date, Cytoscape's CyREST feature has allowed researchers to write workflows that call basic Cytoscape functions, but provides no access to its high value app-based functions. With Cytoscape Automation, workflows can now call apps that have been upgraded to expose their functionality. This article collection is a resource to assist readers in quickly and economically leveraging such apps in reproducible workflows that scale independently to large data sets and production runs.

4.
Nat Methods ; 15(4): 290-298, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29505029

RESUMO

Although artificial neural networks are powerful classifiers, their internal structures are hard to interpret. In the life sciences, extensive knowledge of cell biology provides an opportunity to design visible neural networks (VNNs) that couple the model's inner workings to those of real systems. Here we develop DCell, a VNN embedded in the hierarchical structure of 2,526 subsystems comprising a eukaryotic cell (http://d-cell.ucsd.edu/). Trained on several million genotypes, DCell simulates cellular growth nearly as accurately as laboratory observations. During simulation, genotypes induce patterns of subsystem activities, enabling in silico investigations of the molecular mechanisms underlying genotype-phenotype associations. These mechanisms can be validated, and many are unexpected; some are governed by Boolean logic. Cumulatively, 80% of the importance for growth prediction is captured by 484 subsystems (21%), reflecting the emergence of a complex phenotype. DCell provides a foundation for decoding the genetics of disease, drug resistance and synthetic life.


Assuntos
Fenômenos Fisiológicos Celulares , Aprendizado Profundo , Redes Neurais de Computação , Simulação por Computador , Regulação da Expressão Gênica , Genótipo , Humanos
5.
PLoS Comput Biol ; 13(10): e1005598, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29023449

RESUMO

Network propagation is an important and widely used algorithm in systems biology, with applications in protein function prediction, disease gene prioritization, and patient stratification. However, up to this point it has required significant expertise to run. Here we extend the popular network analysis program Cytoscape to perform network propagation as an integrated function. Such integration greatly increases the access to network propagation by putting it in the hands of biologists and linking it to the many other types of network analysis and visualization available through Cytoscape. We demonstrate the power and utility of the algorithm by identifying mutations conferring resistance to Vemurafenib.


Assuntos
Algoritmos , Software , Biologia de Sistemas/métodos , Animais , Resistencia a Medicamentos Antineoplásicos , Indóis , Modelos Biológicos , Mutação , Mapeamento de Interação de Proteínas/métodos , Sulfonamidas , Vemurafenib
6.
Nat Nanotechnol ; 11(6): 552-558, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26925826

RESUMO

Frequency stability is key to the performance of nanoresonators. This stability is thought to reach a limit with the resonator's ability to resolve thermally induced vibrations. Although measurements and predictions of resonator stability usually disregard fluctuations in the mechanical frequency response, these fluctuations have recently attracted considerable theoretical interest. However, their existence is very difficult to demonstrate experimentally. Here, through a literature review, we show that all studies of frequency stability report values several orders of magnitude larger than the limit imposed by thermomechanical noise. We studied a monocrystalline silicon nanoresonator at room temperature and found a similar discrepancy. We propose a new method to show that this was due to the presence of frequency fluctuations, of unexpected level. The fluctuations were not due to the instrumentation system, or to any other of the known sources investigated. These results challenge our current understanding of frequency fluctuations and call for a change in practices.

7.
Nat Commun ; 6: 6482, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753929

RESUMO

Current approaches to mass spectrometry (MS) require ionization of the analytes of interest. For high-mass species, the resulting charge state distribution can be complex and difficult to interpret correctly. Here, using a setup comprising both conventional time-of-flight MS (TOF-MS) and nano-electromechanical systems-based MS (NEMS-MS) in situ, we show directly that NEMS-MS analysis is insensitive to charge state: the spectrum consists of a single peak whatever the species' charge state, making it significantly clearer than existing MS analysis. In subsequent tests, all the charged particles are electrostatically removed from the beam, and unlike TOF-MS, NEMS-MS can still measure masses. This demonstrates the possibility to measure mass spectra for neutral particles. Thus, it is possible to envisage MS-based studies of analytes that are incompatible with current ionization techniques and the way is now open for the development of cutting-edge system architectures with unique analytical capability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...