Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(3): 1373-1384, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38716972

RESUMO

Bacteriophages (phages) are viruses specific to bacteria that target them with great efficiency and specificity. Phages were first studied for their antibacterial potential in the early twentieth century; however, their use was largely eclipsed by the popularity of antibiotics. Given the surge of antimicrobial-resistant strains worldwide, there has been a renaissance in harnessing phages as therapeutics once more. One of the key advantages of phages is their amenability to modification, allowing the generation of numerous derivatives optimised for specific functions depending on the modification. These enhanced derivatives could display higher infectivity, expanded host range or greater affinity to human tissues, where some bacterial species exert their pathogenesis. Despite this, there has been a noticeable discrepancy between the generation of derivatives in vitro and their clinical application in vivo. In most instances, phage therapy is only used on a compassionate-use basis, where all other treatment options have been exhausted. A lack of clinical trials and numerous regulatory hurdles hamper the progress of phage therapy and in turn, the engineered variants, in becoming widely used in the clinic. In this review, we outline the various types of modifications enacted upon phages and how these modifications contribute to their enhanced bactericidal function compared with wild-type phages. We also discuss the nascent progress of genetically modified phages in clinical trials along with the current issues these are confronted with, to validate it as a therapy in the clinic.


Assuntos
Bacteriófagos , Engenharia Genética , Terapia por Fagos , Terapia por Fagos/métodos , Humanos , Bacteriófagos/genética , Infecções Bacterianas/terapia , Bactérias/virologia , Bactérias/genética , Animais , Antibacterianos/uso terapêutico
2.
mSphere ; 9(3): e0070223, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38415633

RESUMO

Phage treatment has regained attention due to an increase in multiresistant bacteria. For phage therapy to be successful, phages must reach their target bacteria in sufficiently high numbers. Blood-borne phages are believed to be captured by macrophages in the liver and spleen. Since liver sinusoids also consist of specialized scavenger liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), this study investigated the contribution of both cell types in the elimination of Escherichia coli phage K1Fg10b::gfp (K1Fgfp) in mice. Circulatory half-life, organ, and hepatocellular distribution of K1Fgfp were determined following intravenous administration. Internalization of K1Fgfp and effects of phage opsonization on uptake were explored using primary mouse and human LSEC and KC cultures. When inoculated with 107 virions, >95% of the total K1Fgfp load was eliminated from the blood within 20 min, and 94% of the total retrieved K1Fgfp was localized to the liver. Higher doses resulted in slower elimination, possibly reflecting temporary saturation of liver scavenging capacity. Phage DNA was detected in both cell types, with a KC:LSEC ratio of 12:1 per population following cell isolation. Opsonization with plasma proteins increased time-dependent cellular uptake in both LSECs and KCs in vitro. Internalized phages were rapidly transported along the endocytic pathway to lysosomal compartments. Reduced viability of intracellular K1Fgfp corroborated inactivation following endocytosis. This study is the first to identify phage distribution in the liver at the hepatocellular level, confirming clearance of K1Fgfp performed mostly by KCs with a significant uptake also in LSECs.IMPORTANCEFaced with the increasing amounts of bacteria with multidrug antimicrobial resistance, phage therapy has regained attention as a possible treatment option. The phage field has recently experienced an emergence in commercial interest as research has identified new and more efficient ways of identifying and matching phages against resistant superbugs. Currently, phages are unapproved drugs in most parts of the world. For phages to reach broad clinical use, they must be shown to be clinically safe and useful. The results presented herein contribute to increased knowledge about the pharmacokinetics of the T7-like phage K1F in the mammalian system. The cell types of the liver that are responsible for rapid phage blood clearance are identified. Our results highlight the need for more research about appropriate dose regimens when phage therapy is delivered intravenously and advise essential knowledge about cell systems that should be investigated further for detailed phage pharmacodynamics.


Assuntos
Bacteriófagos , Camundongos , Humanos , Animais , Células Endoteliais , Hepatócitos , Fígado , Endocitose , Mamíferos
3.
Biomacromolecules ; 25(1): 413-424, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38124388

RESUMO

Bacteriophages have many biotechnological and therapeutic applications, but as with other biologics, cryopreservation is essential for storage and distribution. Macromolecular cryoprotectants are emerging for a range of biologics, but the chemical space for polymer-mediated phage cryopreservation has not been explored. Here we screen the cryoprotective effect of a panel of polymers against five distinct phages, showing that nearly all the tested polymers provide a benefit. Exceptions were poly(methacrylic acid) and poly(acrylic acid), which can inhibit phage-infection with bacteria, making post-thaw recovery challenging to assess. A particular benefit of a polymeric cryopreservation formulation is that the polymers do not function as carbon sources for the phage hosts (bacteria) and hence do not interfere with post-thaw measurements. This work shows that phages are amenable to protection with hydrophilic polymers and opens up new opportunities for advanced formulations for future phage therapies and to take advantage of the additional functionality brought by the polymers.


Assuntos
Bacteriófagos , Produtos Biológicos , Polímeros/farmacologia , Polímeros/química , Criopreservação , Bactérias , Crioprotetores/farmacologia , Crioprotetores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA