Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 55(3): 1852-1863, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33476134

RESUMO

Exposure to bioaerosols has been implicated in adverse respiratory symptoms, infectious diseases, and bioterrorism. Although these particles have been measured within residential and occupational settings in multiple studies, the deposition of bioaerosol particles within the human respiratory system has been only minimally explored. This paper uses real-world environmental measurement data of total fungal spores using Air-o-Cell cassettes in 16 different apartments and residents' physiological data in those apartments to predict respiratory deposition of the spores. The airborne spore concentrations were measured during the spring, summer, and fall. The respiratory deposition of five most prevalent spore genera-Ascospores, Aspergillus, Basidiospores, Cladosporium, and Myxomycetes-was predicted using three empirical models: the Multiple Path Particle Dosimetry model, using both the Yeh and age-specific versions, and the Bioaerosol Adaptation of the International Committee on Radiological Protection's Lung deposition model. The predicted total deposited number of spores was highest for Ascospores and Cladosporium. While the majority of spores deposit were in the extrathoracic region, there is a significant deposition for both Aspergillus and Cladosporium in the alveolar region, potentially leading to the development of aspergillosis or allergic asthma. Although the dose-response relationship is unknown, the estimate of the actual spore deposition could be the first step in determining such a relationship.


Assuntos
Microbiologia do Ar , Cladosporium , Aspergillus , Monitoramento Ambiental , Humanos , Pulmão , Estações do Ano , Esporos Fúngicos
2.
Atmos Environ (1994) ; 175: 120-126, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29713236

RESUMO

Accurate measurements of personal exposure to atmospheric pollutants such as ozone are important for understanding health risks. We tested a new personal ozone monitor (POM; 2B Technologies) for accuracy, precision, and ease of use. The POM's measurements were compared to simultaneous ozone measurements from a 2B Model 205 monitor and a ThermoScientific 49i monitor, and multiple POMs were placed side-by-side to check precision. Tests were undertaken in a controlled environmental facility, outdoors, and in a private residence. Additionally, ten volunteers wore a POM for five days and answered a questionnaire about its ease of use. The POM measured ozone accurately compared to the 49i ozone monitor, with average relative differences of less than 8%. In the controlled environment tests, the POM's ozone measurements did not change in the presence of additional atmospheric constituents with similar absorption lines to ozone, though there may have been a small decrease in precision and accuracy. Precision between POMs varied by environment (r2 = 0.98 outdoors; r2 = 0.3 to 0.9 in controlled lab conditions). Volunteers reported that the POM was reasonably comfortable to wear, although all reported that they felt that it was too noisy. Overall, the POM is a viable option for personal ozone monitoring.

3.
J Expo Sci Environ Epidemiol ; 27(3): 299-305, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168394

RESUMO

Accurate characterization of particulate matter (PM) exposure in young children is difficult, because personal samplers are often too heavy, bulky or impractical to be used. The Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler was developed to help address this problem. In this study, we measured inhalable PM exposures in 2-year-olds via a lightweight personal sampler worn in a small backpack and evaluated the use of a robotic sampler with an identical sampling train for estimating PM exposure in this age group. PM mass concentrations measured by the personal sampler ranged from 100 to almost 1,200 µg/m3, with a median value of 331 µg/m3. PM concentrations measured by PIPER were considerably lower, ranging from 14 to 513 µg/m3 with a median value of 56 µg/m3. Floor cleaning habits and activity patterns of the 2-year-olds varied widely by home; vigorous play and recent floor cleaning were most associated with higher personal exposure. Our findings highlight the need for additional characterization of children's activity patterns and their effect on personal exposures.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Material Particulado/análise , Pré-Escolar , Monitoramento Ambiental/instrumentação , Feminino , Pisos e Cobertura de Pisos , Humanos , Masculino , New Jersey , Tamanho da Partícula , Robótica/métodos
4.
J Aerosol Sci ; 85: 30-41, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977589

RESUMO

Development of asthma in young children may be associated with high exposure to particulate matter (PM). However, typical stationary samplers may not represent the personal exposure of children ages 3 and younger since they may not detect particles resuspended from the floor as children play, thus reducing our ability to correlate exposure and disease etiology. To address this, an autonomous robot, the Pretoddler Inhalable Particulate Environmental Robotic (PIPER) sampler, was developed to simulate the movements of children as they play on the floor. PIPER and a stationary sampler took simultaneous measurements of particle number concentration in six size channels using an optical particle counter and inhalable PM on filters in 65 homes in New Jersey, USA. To study particle resuspension, for each sampler we calculated the ratio of particle concentration measured while PIPER was moving to the average concentration of particles measured during a reference period when PIPER remained still. For all investigated particle sizes, higher particle resuspension was observed by PIPER compared to the stationary sampler. In 71% of carpeted homes a more significant (at the α = 0.05 level) resuspension of particles larger than 2.5 µm was observed by PIPER compared to the stationary sampler. Typically, particles larger than 2.5 µm were resuspended more efficiently than smaller particles, over both carpeted and bare floors. Additionally, in carpeted homes estimations of PM10 mass from the particle number concentrations measured on PIPER while it was moving were on average a factor of 1.54 higher compared to reference period when PIPER was not moving. For comparison, the stationary sampler measured an increase of PM2.5 mass by a factor of only 1.08 when PIPER was moving compared to a reference period. This demonstrates that PIPER is able to resuspend particles through movement, and provide a better characterization of the resuspended particles than stationary samplers. Accurate measurement of resuspended PM will improve estimates of children's total PM exposure.

5.
J Chromatogr A ; 1362: 16-24, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25182854

RESUMO

Cloud water samples from Whiteface Mountain, NY were used to develop a combined sampling and gas chromatography-mass spectrometric (GCMS) protocol for evaluating the complex mixture of highly polar organic compounds (HPOC) present in this atmospheric medium. Specific HPOC of interest were mono- and di keto-acids which are thought to originate from photochemical reactions of volatile unsaturated hydrocarbons from biogenic and manmade emissions and be a major fraction of atmospheric carbon. To measure HPOC mixtures and the individual keto-acids in cloud water, samples first must be derivatized for clean elution and measurement, and second, have low overall background of the target species as validated by GCMS analysis of field and laboratory blanks. Here, we discuss a dual derivatization method with PFBHA and BSTFA which targets only organic compounds that contain functional groups reacting with both reagents. The method also reduced potential contamination by minimizing the amount of sample processing from the field through the GCMS analysis steps. Once derivatized only gas chromatographic separation and selected ion monitoring (SIM) are needed to identify and quantify the polar organic compounds of interest. Concentrations of the detected total keto-acids in individual cloud water samples ranged from 27.8 to 329.3ngmL(-1) (ppb). Method detection limits for the individual HPOC ranged from 0.17 to 4.99ngmL(-1) and the quantification limits for the compounds ranged from 0.57 to 16.64ngmL(-1). The keto-acids were compared to the total organic carbon (TOC) results for the cloud water samples with concentrations of 0.607-3.350mgL(-1) (ppm). GCMS analysis of all samples and blanks indicated good control of the entire collection and analysis steps. Selected ion monitoring by GCMS of target keto-acids was essential for screening the complex organic carbon mixtures present at low ppb levels in cloud water. It was critical for ensuring high levels of quality assurance and quality control and for the correct identification and quantification of key marker compounds.


Assuntos
Acetamidas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidroxilaminas/análise , Hidroxilaminas/química , Compostos de Trimetilsilil/análise , Compostos de Trimetilsilil/química , Água/química , Limite de Detecção , Reprodutibilidade dos Testes
6.
J Nucl Med ; 51(6): 967-72, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20484439

RESUMO

UNLABELLED: Overexpression, activation, and mutations of the epidermal growth factor receptor (EGFR) are commonly found in solid tumors. The aim of this study was to develop a PET-based method for detecting the constitutively active mutant de2-7 EGFR, which is associated with disease progression and resistance to chemotherapy and radiotherapy in glioma. METHODS: The chimeric antibody ch806, which selectively binds an epitope of the EGFR that is exposed only on overexpressed, mutant, or ligand-activated forms of the receptor, was conjugated to the radiohalogen (124)I via the residualizing ligand IMP-R4, and in vitro properties were characterized. In vivo biodistribution and small-animal PET studies were performed in BALB/c nude mice bearing U87MG.de2-7 glioma xenografts. Imaging results were correlated with measured tumor uptake of the radioconjugate. RESULTS: (124)I-IMP-R4-ch806 had an immunoreactivity of 78.3% and was stable for 7 d when incubated in serum in vitro. The biodistribution analysis of (124)I-IMP-R4-ch806 demonstrated a maximal uptake of 30.95 +/- 6.01 percentage injected dose per gram (%ID/g) in U87MG.de2-7 xenografts at 48 h after injection, with prolonged tumor retention (6.07 +/- 0.80 %ID/g at 216 h after injection). The tumor-to-blood ratio increased from 0.44 at 4 h after injection to a maximum of 4.70 at 168 h after injection. PET of (124)I-IMP-R4-ch806 biodistribution was able to clearly detect the U87MG.de2-7 tumors at 24 h after injection and for at least 168 h after injection. Correlation between tumor PET image quantitation of (124)I-IMP-R4-ch806 and %ID/g determined from resected tissues (r = 0.9350) was excellent. CONCLUSION: These results show that immuno-PET with (124)I-IMP-R4-ch806 is feasible and allows noninvasive quantitation of de2-7 EGFR expression in vivo.


Assuntos
Anticorpos Monoclonais , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico por imagem , Glioma/genética , Oligopeptídeos/metabolismo , Ácido Pentético/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Glioma/metabolismo , Humanos , Radioisótopos do Iodo , Camundongos , Ácido Pentético/metabolismo , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA