RESUMO
Epitranscriptomics is a field that delves into post-transcriptional changes. Among these modifications, the conversion of adenosine to inosine, traduced as guanosine (A>I(G)), is one of the known RNA-editing mechanisms, catalyzed by ADARs. This type of RNA editing is the most common type of editing in mammals and contributes to biological diversity. Disruption in the A>I(G) RNA-editing balance has been linked to diseases, including several types of cancer. Drug resistance in patients with cancer represents a significant public health concern, contributing to increased mortality rates resulting from therapy non-responsiveness and disease progression, representing the greatest challenge for researchers in this field. The A>I(G) RNA editing is involved in several mechanisms over the immunotherapy and genotoxic drug response and drug resistance. This review investigates the relationship between ADAR1 and specific A>I(G) RNA-edited sites, focusing particularly on breast cancer, and the impact of these sites on DNA damage repair and the immune response over anti-cancer therapy. We address the underlying mechanisms, bioinformatics, and in vitro strategies for the identification and validation of A>I(G) RNA-edited sites. We gathered databases related to A>I(G) RNA editing and cancer and discussed the potential clinical and research implications of understanding A>I(G) RNA-editing patterns. Understanding the intricate role of ADAR1-mediated A>I(G) RNA editing in breast cancer holds significant promise for the development of personalized treatment approaches tailored to individual patients' A>I(G) RNA-editing profiles.
Assuntos
Adenosina Desaminase , Neoplasias da Mama , Edição de RNA , Proteínas de Ligação a RNA , Humanos , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Feminino , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Adenosina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Inosina/metabolismo , Inosina/genética , Animais , Guanosina/metabolismo , Dano ao DNARESUMO
Dysregulated A>I(G) RNA editing, which is mainly catalyzed by ADAR1 and is a type of post-transcriptional modification, has been linked to cancer. A low response to therapy in breast cancer (BC) is a significant contributor to mortality. However, it remains unclear if there is an association between A>I(G) RNA-edited sites and sensitivity to genotoxic drugs. To address this issue, we employed a stringent bioinformatics approach to identify differentially RNA-edited sites (DESs) associated with low or high sensitivity (FDR 0.1, log2 fold change 2.5) according to the IC50 of PARP inhibitors, anthracyclines, and alkylating agents using WGS/RNA-seq data in BC cell lines. We then validated these findings in patients with basal subtype BC. These DESs are mainly located in non-coding regions, but a lesser proportion in coding regions showed predicted deleterious consequences. Notably, some of these DESs are previously reported as oncogenic variants, and in genes related to DNA damage repair, drug metabolism, gene regulation, the cell cycle, and immune response. In patients with BC, we uncovered DESs predominantly in immune response genes, and a subset with a significant association (log-rank test p < 0.05) between RNA editing level in LSR, SMPDL3B, HTRA4, and LL22NC03-80A10.6 genes, and progression-free survival. Our findings provide a landscape of RNA-edited sites that may be involved in drug response mechanisms, highlighting the value of A>I(G) RNA editing in clinical outcomes for BC.
RESUMO
Triple-negative breast cancer (TNBC) represents a challenge in the search for new therapeutic targets. TNBCs are aggressive and generate resistance to chemotherapy. Tumors of TNBC patients with poor prognosis present a high level of adenosine deaminase acting on RNA1 (ADAR1). We explore the connection of ADAR1 with the canonical Wnt signaling pathway and the effect of modulation of its expression in TNBC. Expression data from cell line sequencing (DepMap) and TCGA samples were downloaded and analyzed. We lentivirally generated an MDA-MB-231 breast cancer cell line that overexpress (OE) ADAR1p110 or an ADAR knockdown. Abundance of different proteins related to Wnt/ß-catenin pathway and activity of nuclear ß-catenin were analyzed by Western blot and luciferase TOP/FOP reporter assay, respectively. Cell invasion was analyzed by matrigel assay. In mice, we study the behavior of tumors generated from ADAR1p110 (OE) cells and tumor vascularization immunostaining were analyzed. ADAR1 connects to the canonical Wnt pathway in TNBC. ADAR1p110 overexpression decreased GSK-3ß, while increasing active ß-catenin. It also increased the activity of nuclear ß-catenin and increased its target levels. ADAR1 knockdown has the opposite effect. MDA-MB-231 ADAR1 (OE) cells showed increased capacity of invasion. Subsequently, we observed that tumors derived from ADAR1p110 (OE) cells showed increased invasion towards the epithelium, and increased levels of Survivin and CD-31 expressed in vascular endothelial cells. These results indicate that ADAR1 overexpression alters the expression of some key components of the canonical Wnt pathway, favoring invasion and neovascularization, possibly through activation of the ß-catenin, which suggests an unknown role of ADAR1p110 in aggressiveness of TNBC tumors.
Assuntos
Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Via de Sinalização Wnt , beta Catenina/metabolismoRESUMO
The molecular connections between homeostatic systems that maintain both genome integrity and proteostasis are poorly understood. Here we identify the selective activation of the unfolded protein response transducer IRE1α under genotoxic stress to modulate repair programs and sustain cell survival. DNA damage engages IRE1α signaling in the absence of an endoplasmic reticulum (ER) stress signature, leading to the exclusive activation of regulated IRE1α-dependent decay (RIDD) without activating its canonical output mediated by the transcription factor XBP1. IRE1α endoribonuclease activity controls the stability of mRNAs involved in the DNA damage response, impacting DNA repair, cell cycle arrest and apoptosis. The activation of the c-Abl kinase by DNA damage triggers the oligomerization of IRE1α to catalyze RIDD. The protective role of IRE1α under genotoxic stress is conserved in fly and mouse. Altogether, our results uncover an important intersection between the molecular pathways that sustain genome stability and proteostasis.
Assuntos
Sobrevivência Celular/genética , Reparo do DNA , Proteínas de Drosophila/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/genética , Animais , Dano ao DNA , Proteínas de Drosophila/genética , Drosophila melanogaster , Endorribonucleases/genética , Feminino , Fibroblastos , Instabilidade Genômica , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteostase/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , RNA Mensageiro/metabolismoRESUMO
RNA editing has emerged as a novel mechanism in cancer progression. The double stranded RNA-specific adenosine deaminase (ADAR) modifies the expression of an important proportion of genes involved in cell cycle control, DNA damage response (DDR) and transcriptional processing, suggesting an important role of ADAR in transcriptome regulation. Despite the phenotypic implications of ADAR deregulation in several cancer models, the role of ADAR on DDR and proliferation in breast cancer has not been fully addressed. Here, we show that ADAR expression correlates significantly with clinical outcomes and DDR, cell cycle and proliferation mRNAs of previously reported edited transcripts in breast cancer patients. ADAR's knock-down in a breast cancer cell line produces stability changes of mRNAs involved in DDR and DNA replication. Breast cancer cells with reduced levels of ADAR show a decreased viability and an increase in apoptosis, displaying a significant decrease of their DDR activation, compared to control cells. These results suggest that ADAR plays an important role in breast cancer progression through the regulation of mRNA stability and expression of those genes involved in proliferation and DDR impacting the viability of breast cancer cells.
Assuntos
Adenosina Desaminase/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular/fisiologia , Dano ao DNA/fisiologia , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , Adenosina Desaminase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Células MCF-7 , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Several mechanisms directing a rapid transcriptional reactivation of genes immediately after mitosis have been described. However, little is known about the maintenance of repressive signals during mitosis. In this work, we address the role of Ski in the repression of gene expression during M/G1 transition in mouse embryonic fibroblasts (MEFs). We found that Ski localises as a distinct pair of dots at the pericentromeric region of mitotic chromosomes, and the absence of the protein is related to high acetylation and low tri-methylation of H3K9 in pericentromeric major satellite. Moreover, differential expression assays in early G1 cells showed that the presence of Ski is significantly associated with repression of genes localised nearby to pericentromeric DNA. In mitotic cells, chromatin immunoprecipitation assays confirmed the association of Ski to major satellite and the promoters of the most repressed genes: Mmp3, Mmp10 and Mmp13. These genes are at pericentromeric region of chromosome 9. In these promoters, the presence of Ski resulted in increased H3K9 tri-methylation levels. This Ski-dependent regulation is also observed during interphase. Consequently, Mmp activity is augmented in Ski-/- MEFs. Altogether, these data indicate that association of Ski with the pericentromeric region of chromosomes during mitosis is required to maintain the silencing bookmarks of underlying chromatin.
Assuntos
Centrômero/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Histonas/metabolismo , Metaloproteinases da Matriz Secretadas/genética , Proteínas Proto-Oncogênicas/metabolismo , Acetilação , Animais , Células Cultivadas , Centrômero/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Metilação , Camundongos , Mitose , Regiões Promotoras Genéticas , Ativação TranscricionalRESUMO
Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis independent of ΔΨm.
Assuntos
Cálcio/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Homeostase , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Succinato Desidrogenase/metabolismo , Complexo I de Transporte de Elétrons/genética , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Succinato Desidrogenase/genéticaRESUMO
Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.
Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Cátion TRPM/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Modelos Biológicos , Gradação de Tumores , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Regulação para CimaRESUMO
BACKGROUND: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA (ADAR) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer.
Assuntos
Regiões 3' não Traduzidas/genética , Adenosina Desaminase/genética , Neoplasias da Mama/genética , Edição de RNA/genética , Estabilidade de RNA/genética , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estabilidade de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismoRESUMO
Increased expression of the TRPM4 channel has been reported to be associated with the progression of prostate cancer. However, the molecular mechanism underlying its effect remains unknown. This work found that decreasing TRPM4 levels leads to the reduced proliferation of PC3 cells. This effect was associated with a decrease in total ß-catenin protein levels and its nuclear localization, and a significant reduction in Tcf/Lef transcriptional activity. Moreover, TRPM4 silencing increases the Ser33/Ser37/Thr41 ß-catenin phosphorylated population and reduces the phosphorylation of GSK-3ß at Ser9, suggesting an increase in ß-catenin degradation as the underlying mechanism. Conversely, TRPM4 overexpression in LNCaP cells increases the Ser9 inhibitory phosphorylation of GSK-3ß and the total levels of ß-catenin and its nonphosphorylated form. Finally, PC3 cells with reduced levels of TRPM4 showed a decrease in basal and stimulated phosphoactivation of Akt1, which is likely responsible for the decrease in GSK-3ß activity in these cells. Our results also suggest that the effect of TRPM4 on Akt1 is probably mediated by an alteration in the calcium/calmodulin-EGFR axis, linking TRPM4 activity with the observed effects in ß-catenin-related signaling pathways. These results suggest a role for TRPM4 channels in ß-catenin oncogene signaling and underlying mechanisms, highlighting this ion channel as a new potential target for future therapies in prostate cancer.
Assuntos
Proliferação de Células/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Canais de Cátion TRPM/metabolismo , beta Catenina/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Humanos , Masculino , Células PC-3 , Fosforilação/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/genética , Canais de Cátion TRPM/genética , beta Catenina/genéticaRESUMO
BACKGROUND: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA ( ADAR ) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolution. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional consequences are not fully addressed. RESULTS: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3'UTR and exonic regions in breast cancer cells compared to immortalized non-malignant cell lines. In addition, tumors from the BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well-characterized UTRs targeted by ADAR1. Basal-like subtype breast cancer patients with high level of ADAR1 mRNA expression shows a worse clinical outcome and increased editing in their 3'UTRs. Interestingly, editing was particularly increased in the 3'UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We confirmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR-75-1). CONCLUSIONS: Altogether, these results revealed a significant association between the mRNA editing in genes related to cancer-relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function in breast cancer.
Assuntos
Humanos , Feminino , Neoplasias da Mama/genética , Adenosina Desaminase/genética , Proteínas de Ligação a RNA/genética , Edição de RNA/genética , Regiões não Traduzidas/genética , Estabilidade de RNA/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/metabolismo , Perfilação da Expressão Gênica , Estabilidade de RNA/fisiologia , Linhagem Celular TumoralRESUMO
Studies on the low-abundance transcriptome are of paramount importance for identifying the intimate mechanisms of tumor progression that can lead to novel therapies. The aim of the present study was to identify novel markers and targetable genes and pathways in advanced human gastric cancer through analyses of the low-abundance transcriptome. The procedure involved an initial subtractive hybridization step, followed by global gene expression analysis using microarrays. We observed profound differences, both at the single gene and gene ontology levels, between the low-abundance transcriptome and the whole transcriptome. Analysis of the low-abundance transcriptome led to the identification and validation by tissue microarrays of novel biomarkers, such as LAMA3 and TTN; moreover, we identified cancer type-specific intracellular pathways and targetable genes, such as IRS2, IL17, IFNγ, VEGF-C, WISP1, FZD5 and CTBP1 that were not detectable by whole transcriptome analyses. We also demonstrated that knocking down the expression of CTBP1 sensitized gastric cancer cells to mainstay chemotherapeutic drugs. We conclude that the analysis of the low-abundance transcriptome provides useful insights into the molecular basis and treatment of cancer.