Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Med Surg (Lond) ; 86(4): 2067-2080, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576928

RESUMO

Background and objective: Guillain-Barre syndrome (GBS) has been found to have some interesting association with vaccinations. This paper mainly focuses on exploring different associations between COVID-19 vaccination and GBS. Methods: Electronic databases such as PubMed, Google Scholar, Cochrane, and Embase were searched using MESH terms for case reports published till 1 August 2023 from which 70 case reports were documented involving 103 individuals from 23 different countries. Result and discussion: The case reports were from a wide range of individuals aged from 13 to 87 years with an average age of 53±20 interquartile range years along with male predominance. The average time between receiving the vaccine and the onset of symptoms was 13.08±2.14 days. Prominent clinical features included back pain, facial diplegia, weakness, and paraesthesia whereas the main diagnostic studies were cerebrospinal fluid (CSF) analysis and electromagnetic studies. The principal diagnostic clue was albumin-cytological dissociation in CSF while being negative for anti-ganglioside antibodies or SARS-CoV-2. Available treatment options consisted of intravenous immunoglobulin and Plasmapheresis. Patients with comorbidities such as diabetes mellitus, hypertension, dyslipidemia, permanent atrial fibrillation, hypothyroidism, Hashimoto's thyroiditis, Chronic Obstructive Pulmonary Disease, asthma, osteoporosis, migraine, rheumatoid arthritis, osteoarthritis, ulcerative colitis, coeliac disease, seizures, bipolar disorder, endometriosis, multiple sclerosis, bell's palsy, squamous cell carcinoma, prostate cancer were included in our study. Conclusion: Overall, this review evaluated innovative and clinically relevant associations between COVID-19 vaccination and GBS. Understanding of this uncommon potential side effect of COVID-19 vaccination is crucial for prompt diagnosis and appropriate treatment. Importantly, GBS should not be considered a contraindication to vaccination. This underscores the importance of ongoing research to enhance the safety and efficacy of COVID-19 vaccination efforts.

2.
Compr Physiol ; 14(1): 5269-5290, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38158369

RESUMO

Electrical mechanosensing is a process mediated by specialized ion channels, gated directly or indirectly by mechanical forces, which allows cells to detect and subsequently respond to mechanical stimuli. The activation of mechanosensitive (MS) ion channels, intrinsically gated by mechanical forces, or mechanoresponsive (MR) ion channels, indirectly gated by mechanical forces, results in electrical signaling across lipid bilayers, such as the plasma membrane. While the functions of mechanically gated channels within a sensory context (e.g., proprioception and touch) are well described, there is emerging data demonstrating functions beyond touch and proprioception, including mechanoregulation of intracellular signaling and cellular/systemic metabolism. Both MR and MS ion channel signaling have been shown to contribute to the regulation of metabolic dysfunction, including obesity, insulin resistance, impaired insulin secretion, and inflammation. This review summarizes our current understanding of the contributions of several MS/MR ion channels in cell types implicated in metabolic dysfunction, namely, adipocytes, pancreatic ß-cells, hepatocytes, and skeletal muscle cells, and discusses MS/MR ion channels as possible therapeutic targets. © 2024 American Physiological Society. Compr Physiol 14:5269-5290, 2024.


Assuntos
Canais Iônicos , Transdução de Sinais , Humanos , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Mecanotransdução Celular/fisiologia
3.
Plant Mol Biol ; 113(6): 383-400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991689

RESUMO

Plant cell wall-derived oligosaccharides, i.e., damage-associated molecular patterns (DAMPs), could be generated after pathogen attack or during normal plant development, perceived by cell wall receptors, and can alter immunity and cell wall composition. Therefore, we hypothesised that xylo-oligosaccharides (XOS) could act as an elicitor and trigger immune responses. To test this, we treated Arabidopsis with xylobiose (XB) and investigated different parameters. XB-treatment significantly triggered the generation of reactive oxygen species (ROS), activated MAPK protein phosphorylation, and induced callose deposition. The combination of XB (DAMP) and flg22 a microbe-associated molecular pattern (MAMP) further enhanced ROS response and gene expression of PTI marker genes. RNA sequencing analysis revealed that more genes were differentially regulated after 30 min compared to 24 h XB-treated leaves, which correlated with ROS response. Increased xylosidase activity and soluble xylose level after 30 min and 3 h of XB-treatment were observed which might have weakened the DAMP response. However, an increase in total cell wall sugar and a decrease in uronic acid level was observed at both 30 min and 24 h. Additionally, arabinose, rhamnose, and xylose levels were increased in 30 min, and glucose was increased in 24 h compared to mock-treated leaves. The level of jasmonic acid, abscisic acid, auxin, and cytokinin were also affected after XB treatment. Overall, our data revealed that the shortest XOS can act as a DAMP, which triggers the PTI response and alters cell wall composition and hormone level.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xilose/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Oligossacarídeos/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas
4.
ASN Neuro ; 15: 17590914231184072, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37410995

RESUMO

Volume-regulated anion channels (VRACs) are a group of ubiquitously expressed outwardly-rectifying anion channels that sense increases in cell volume and act to return cells to baseline volume through an efflux of anions and organic osmolytes, including glutamate. Because cell swelling, increased extracellular glutamate levels, and reduction of the brain extracellular space (ECS) all occur during seizure generation, we set out to determine whether VRACs are dysregulated throughout mesial temporal lobe epilepsy (MTLE), the most common form of adult epilepsy. To accomplish this, we employed the IHKA experimental model of MTLE, and probed for the expression of LRRC8A, the essential pore-forming VRAC subunit, at acute, early-, mid-, and late-epileptogenic time points (1-, 7-, 14-, and 30-days post-IHKA, respectively). Western blot analysis revealed the upregulation of total dorsal hippocampal LRRC8A 14-days post-IHKA in both the ipsilateral and contralateral hippocampus. Immunohistochemical analyses showed an increased LRRC8A signal 7-days post-IHKA in both the ipsilateral and contralateral hippocampus, along with layer-specific changes 1-, 7-, and 30-days post-IHKA bilaterally. LRRC8A upregulation 1 day post-IHKA was observed primarily in astrocytes; however, some upregulation was also observed in neurons. Glutamate-GABA/glutamine cycle enzymes glutamic acid decarboxylase, glutaminase, and glutamine synthetase were also dysregulated at the 7-day timepoint post status epilepticus. The timepoint-dependent upregulation of total hippocampal LRRC8A and the possible subsequent increased efflux of glutamate in the epileptic hippocampus suggest that the dysregulation of astrocytic VRAC may play an important role in the development of epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Adulto , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Ácido Caínico/toxicidade , Ácido Caínico/metabolismo , Ácido Glutâmico/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Ânions/metabolismo , Proteínas de Membrana/metabolismo
5.
FASEB J ; 37(7): e23028, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310356

RESUMO

Leucine-rich repeat containing 8A (LRRC8A) volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A associates with NADPH oxidase 1 (Nox1) and supports extracellular superoxide production. We tested the hypothesis that VRACs modulate TNFα signaling and vasomotor function in mice lacking LRRC8A exclusively in vascular smooth muscle cells (VSMCs, Sm22α-Cre, Knockout). Knockout (KO) mesenteric vessels contracted normally but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). Forty-eight hours of ex vivo exposure to TNFα (10 ng/mL) enhanced contraction to norepinephrine (NE) and markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 33 proteins that interacted with LRRC8A. Among them, the myosin phosphatase rho-interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots. siLRRC8A or CBX treatment decreased RhoA activity in VSMCs, and MYPT1 phosphorylation was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Interaction of LRRC8A with MPRIP may allow redox regulation of the cytoskeleton by linking Nox1 activation to impaired vasodilation. This identifies VRACs as potential targets for treatment or prevention of vascular disease.


Assuntos
Músculo Liso Vascular , Animais , Camundongos , Acetilcolina/farmacologia , Ânions , Proteínas de Membrana/genética , Camundongos Knockout , Fosfatase de Miosina-de-Cadeia-Leve , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia
6.
Circ Res ; 132(11): e206-e222, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37132383

RESUMO

BACKGROUND: Platelet adhesion and aggregation play a crucial role in arterial thrombosis and ischemic stroke. Here, we identify platelet ERO1α (endoplasmic reticulum oxidoreductase 1α) as a novel regulator of Ca2+ signaling and a potential pharmacological target for treating thrombotic diseases. METHODS: Intravital microscopy, animal disease models, and a wide range of cell biological studies were utilized to demonstrate the pathophysiological role of ERO1α in arteriolar and arterial thrombosis and to prove the importance of platelet ERO1α in platelet activation and aggregation. Mass spectrometry, electron microscopy, and biochemical studies were used to investigate the molecular mechanism. We used novel blocking antibodies and small-molecule inhibitors to study whether ERO1α can be targeted to attenuate thrombotic conditions. RESULTS: Megakaryocyte-specific or global deletion of Ero1α in mice similarly reduced platelet thrombus formation in arteriolar and arterial thrombosis without affecting tail bleeding times and blood loss following vascular injury. We observed that platelet ERO1α localized exclusively in the dense tubular system and promoted Ca2+ mobilization, platelet activation, and aggregation. Platelet ERO1α directly interacted with STIM1 (stromal interaction molecule 1) and SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase 2) and regulated their functions. Such interactions were impaired in mutant STIM1-Cys49/56Ser and mutant SERCA2-Cys875/887Ser. We found that ERO1α modified an allosteric Cys49-Cys56 disulfide bond in STIM1 and a Cys875-Cys887 disulfide bond in SERCA2, contributing to Ca2+ store content and increasing cytosolic Ca2+ levels during platelet activation. Inhibition of Ero1α with small-molecule inhibitors but not blocking antibodies attenuated arteriolar and arterial thrombosis and reduced infarct volume following focal brain ischemia in mice. CONCLUSIONS: Our results suggest that ERO1α acts as a thiol oxidase for Ca2+ signaling molecules, STIM1 and SERCA2, and enhances cytosolic Ca2+ levels, promoting platelet activation and aggregation. Our study provides evidence that ERO1α may be a potential target to reduce thrombotic events.


Assuntos
AVC Isquêmico , Trombose , Animais , Camundongos , Plaquetas/metabolismo , Sinalização do Cálcio , Dissulfetos , AVC Isquêmico/metabolismo , Ativação Plaquetária
7.
iScience ; 26(5): 106669, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37182109

RESUMO

The ubiquitous volume-regulated anion channels (VRACs) facilitate cell volume control and contribute to many other physiological processes. Treatment with non-specific VRAC blockers or brain-specific deletion of the essential VRAC subunit LRRC8A is highly protective in rodent models of stroke. Here, we tested the widely accepted idea that the harmful effects of VRACs are mediated by release of the excitatory neurotransmitter glutamate. We produced conditional LRRC8A knockout either exclusively in astrocytes or in the majority of brain cells. Genetically modified mice were subjected to an experimental stroke (middle cerebral artery occlusion). The astrocytic LRRC8A knockout yielded no protection. Conversely, the brain-wide LRRC8A deletion strongly reduced cerebral infarction in both heterozygous (Het) and full KO mice. Yet, despite identical protection, Het mice had full swelling-activated glutamate release, whereas KO animals showed its virtual absence. These findings suggest that LRRC8A contributes to ischemic brain injury via a mechanism other than VRAC-mediated glutamate release.

8.
Nat Commun ; 14(1): 1712, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973289

RESUMO

The pannexin 2 channel (PANX2) participates in multiple physiological processes including skin homeostasis, neuronal development, and ischemia-induced brain injury. However, the molecular basis of PANX2 channel function remains largely unknown. Here, we present a cryo-electron microscopy structure of human PANX2, which reveals pore properties contrasting with those of the intensely studied paralog PANX1. The extracellular selectivity filter, defined by a ring of basic residues, more closely resembles that of the distantly related volume-regulated anion channel (VRAC) LRRC8A, rather than PANX1. Furthermore, we show that PANX2 displays a similar anion permeability sequence as VRAC, and that PANX2 channel activity is inhibited by a commonly used VRAC inhibitor, DCPIB. Thus, the shared channel properties between PANX2 and VRAC may complicate dissection of their cellular functions through pharmacological manipulation. Collectively, our structural and functional analysis provides a framework for development of PANX2-specific reagents that are needed for better understanding of channel physiology and pathophysiology.


Assuntos
Conexinas , Proteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Ânions , Transporte Biológico , Conexinas/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
9.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945623

RESUMO

Background: In vascular smooth muscle cells (VSMCs), LRRC8A volume regulated anion channels (VRACs) are activated by inflammatory and pro-contractile stimuli including tumor necrosis factor alpha (TNFα), angiotensin II and stretch. LRRC8A physically associates with NADPH oxidase 1 (Nox1) and supports its production of extracellular superoxide (O 2 -• ). Methods and Results: Mice lacking LRRC8A exclusively in VSMCs (Sm22α-Cre, KO) were used to assess the role of VRACs in TNFα signaling and vasomotor function. KO mesenteric vessels contracted normally to KCl and phenylephrine, but relaxation to acetylcholine (ACh) and sodium nitroprusside (SNP) was enhanced compared to wild type (WT). 48 hours of ex vivo exposure to TNFα (10ng/ml) markedly impaired dilation to ACh and SNP in WT but not KO vessels. VRAC blockade (carbenoxolone, CBX, 100 µM, 20 min) enhanced dilation of control rings and restored impaired dilation following TNFα exposure. Myogenic tone was absent in KO rings. LRRC8A immunoprecipitation followed by mass spectroscopy identified 35 proteins that interacted with LRRC8A. Pathway analysis revealed actin cytoskeletal regulation as the most closely associated function of these proteins. Among these proteins, the Myosin Phosphatase Rho-Interacting protein (MPRIP) links RhoA, MYPT1 and actin. LRRC8A-MPRIP co-localization was confirmed by confocal imaging of tagged proteins, Proximity Ligation Assays, and IP/western blots which revealed LRRC8A binding at the second Pleckstrin Homology domain of MPRIP. siLRRC8A or CBX treatment decreased RhoA activity in cultured VSMCs, and MYPT1 phosphorylation at T853 was reduced in KO mesenteries suggesting that reduced ROCK activity contributes to enhanced relaxation. MPRIP was a target of redox modification, becoming oxidized (sulfenylated) after TNFα exposure. Conclusions: Interaction of Nox1/LRRC8A with MPRIP/RhoA/MYPT1/actin may allow redox regulation of the cytoskeleton and link Nox1 activation to both inflammation and vascular contractility.

10.
Ann Med Surg (Lond) ; 85(2): 73-75, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36845800

RESUMO

Epilepsy is the most common neurological disorder that affects ~1-2% of the global population, leading to presentation in the emergency room. The neuroimaging modalities have an important application in diagnosing new onset unprovoked seizures and epilepsy. This article discusses the various neuroimaging modalities for diagnosing seizures and epilepsy and addresses that the MRI is the investigation of choice, and urgent imaging is more commonly done by computed tomography in patients with new-onset seizures. The goal of the article was to diagnose seizures and epilepsy for early intervention to prevent complications or damage to the brain. MRI detects even small cortical epileptogenic lesions, whereas computed tomography is used in screening, diagnosis, evaluation, and monitoring of the prognosis of seizures in children. Magnetic resonance spectroscopy provides biochemical measurements of reduced N-acetyl aspartate and increased creatinine and choline in dysfunctioning epileptic zones. Volumetric MRI is very sensitive and specific in determining seizures originating in extratemporal and extrahippocampal sites. Even though diffusion tensor magnetic resonance imaging has a limited role, it is used in specific pediatric patient groups with temporal lobe epilepsy. Functional radionuclide imaging modalities (positron emission tomography and single-photon emission computerized tomography) are increasingly significant for the identification of the epileptic region. Furthermore, the authors recommend the use of artificial intelligence and further research on imaging modalities for early diagnosis of seizures and epilepsy.

11.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36749637

RESUMO

Healthy expansion of adipose tissue is critical for the maintenance of metabolic health, providing an optimized reservoir for energy storage in the form of triacylglycerol-rich lipoproteins. Dysfunctional adipocytes that are unable to efficiently store lipid can result in lipodystrophy and contribute to nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. Leucine-rich repeat containing protein 8a/SWELL1 functionally encodes the volume-regulated anion channel complex in adipocytes, is induced in early obesity, and is required for normal adipocyte expansion during high-fat feeding. Adipose-specific SWELL1 ablation (Adipo KO) leads to insulin resistance and hyperglycemia during caloric excess, both of which are associated with NAFLD. Here, we show that Adipo-KO mice exhibited impaired adipose depot expansion and excess lipolysis when raised on a variety of high-fat diets, resulting in increased diacylglycerides and hepatic steatosis, thereby driving liver injury. Liver lipidomic analysis revealed increases in oleic acid-containing hepatic triacylglycerides and injurious hepatic diacylglyceride species, with reductions in hepatocyte-protective phospholipids and antiinflammatory free fatty acids. Aged Adipo-KO mice developed hepatic steatosis on a regular chow diet, and Adipo-KO male mice developed spontaneous, aggressive hepatocellular carcinomas (HCCs). These data highlight the importance of adipocyte SWELL1 for healthy adipocyte expansion to protect against NAFLD and HCC in the setting of overnutrition and with aging.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Dieta Hiperlipídica , Glucose/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo
12.
Ann Med Surg (Lond) ; 84: 104863, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36582909

RESUMO

Introduction: and importance: Hydatid cyst disease is caused by Echinococcus tapeworm and is one of the major health problems in endemic regions like Nepal. The cases of splenic hydatidosis are quite rare and giant isolated primary splenic hydatidosis is even rarer. The patients present with vague symptoms or no symptoms at all. Here we report a case of isolated splenic hydatid cyst. So, we should think the differential diagnosis of splenic hydatidosis in any abdominal case of endemic regions. Case presentation: A 27-year-old female presented with left-side abdominal pain for the past 7 months without any particular attraction. Abdominal ultrasound showed a well-defined cystic mass on the upper pole with low-level internal floating debris. Contrast Enhanced CT scan showed well defined cystic lesion measuring about 10.8 × 9.6 × 8.5 cm in the upper pole of the spleen with an exophytic component and minimal homogenous wall enhancement. Laparoscopic Splenectomy was done and albendazole for 3 weeks was prescribed after all the patient was completely normal. Clinical discussion: In this case, the optimal treatment of giant isolated splenic hydatidosis was splenectomy and prescription of albendazole. Conclusion: We believe in any abdominal case of the endemic region, the hydatid cyst of the spleen should be taken as one of the differential diagnoses and should be managed appropriately before the complication arises.

13.
Medicine (Baltimore) ; 101(50): e32201, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36550795

RESUMO

INTRODUCTION: Due to heterogeneity in the organs involved and a variety of influencing factors, a wide range of clinical manifestations are possible in systemic lupus erythematosus (SLE). In our knowledge, a combination of leg ulcer and dysentery as presenting symptoms of SLE has never been reported previously. PATIENT CONCERNS: A 13-year-old female child presented with a chronic wound over right medial malleolus for 6 months, and passing of watery stool, later mixed with blood, for 4 days. On examination, she had a fever of 38.5°C. Lab reports revealed anemia, thrombocytopenia, proteinuria, and features of urinary tract infection. Renal biopsy showed membranous glomerulonephropathy. She was positive for antinuclear antibodies (ANA) and antidouble stranded DNA (anti-dsDNA). Immunofluorescence revealed reduced C4 and C3 levels. Abdominal ultrasound showed symmetrical circumscribed thickening, and edematous cecum and ascending colon. DIAGNOSIS: The patient was diagnosed with SLE based on the Systemic Lupus International Collaborating Clinics classification criteria. INTERVENTIONS: The patient was treated with prednisolone, hydroxychloroquine, metronidazole, ciprofloxacin, trypsin-chymotrypsin, zinc, calcium, and calcitriol tablets. OUTCOMES: Fever subsided within 3 days of treatment. Gastrointestinal symptoms subsided within 1 week of treatment. On 31 day of treatment, the wound had been reduced and showed features of healing. CONCLUSION: Dysentery and leg ulcers can be the manifestations of SLE. Therefore, SLE should also be considered when a patient presents with such symptoms. Any suspicion of infection in SLE should be treated aggressively with antibiotics.


Assuntos
Disenteria , Úlcera da Perna , Leucopenia , Lúpus Eritematoso Sistêmico , Feminino , Criança , Humanos , Adolescente , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Prednisolona/uso terapêutico , Febre , Anticorpos Antinucleares , Úlcera da Perna/etiologia
14.
Nat Commun ; 13(1): 784, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145074

RESUMO

Type 2 diabetes is associated with insulin resistance, impaired pancreatic ß-cell insulin secretion, and nonalcoholic fatty liver disease. Tissue-specific SWELL1 ablation impairs insulin signaling in adipose, skeletal muscle, and endothelium, and impairs ß-cell insulin secretion and glycemic control. Here, we show that ICl,SWELL and SWELL1 protein are reduced in adipose and ß-cells in murine and human diabetes. Combining cryo-electron microscopy, molecular docking, medicinal chemistry, and functional studies, we define a structure activity relationship to rationally-design active derivatives of a SWELL1 channel inhibitor (DCPIB/SN-401), that bind the SWELL1 hexameric complex, restore SWELL1 protein, plasma membrane trafficking, signaling, glycemic control and islet insulin secretion via SWELL1-dependent mechanisms. In vivo, SN-401 restores glycemic control, reduces hepatic steatosis/injury, improves insulin-sensitivity and insulin secretion in murine diabetes. These findings demonstrate that SWELL1 channel modulators improve SWELL1-dependent systemic metabolism in Type 2 diabetes, representing a first-in-class therapeutic approach for diabetes and nonalcoholic fatty liver disease.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Controle Glicêmico/métodos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo/metabolismo , Animais , Microscopia Crioeletrônica , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Transdução de Sinais , Transcriptoma
16.
Curr Opin Lipidol ; 33(1): 47-56, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34889803

RESUMO

PURPOSE OF REVIEW: Total ceramide levels in cardiac tissue relate to cardiac dysfunction in animal models. However, emerging evidence suggests that the fatty acyl chain length of ceramides also impacts their relationship to cardiac function. This review explores evidence regarding the relationship between ceramides and left ventricular dysfunction and heart failure. It further explores possible mechanisms underlying these relationships. RECENT FINDINGS: In large, community-based cohorts, a higher ratio of specific plasma ceramides, C16 : 0/C24 : 0, related to worse left ventricular dysfunction. Increased left ventricular mass correlated with plasma C16 : 0/C24 : 0, but this relationship became nonsignificant after adjustment for multiple comparisons. Decreased left atrial function and increased left atrial size also related to C16 : 0/C24 : 0. Furthermore, increased incident heart failure, overall cardiovascular disease (CVD) mortality and all-cause mortality were associated with higher C16 : 0/C24 : 0 (or lower C24 : 0/C16 : 0). Finally, a number of possible biological mechanisms are outlined supporting the link between C16 : 0/C24 : 0 ceramides, ceramide signalling and CVD. SUMMARY: High cardiac levels of total ceramides are noted in heart failure. In the plasma, C16 : 0/C24 : 0 ceramides may be a valuable biomarker of preclinical left ventricular dysfunction, remodelling, heart failure and mortality. Continued exploration of the mechanisms underlying these profound relationships may help develop specific lipid modulators to combat cardiac dysfunction and heart failure.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Animais , Biomarcadores , Ceramidas , Coração , Humanos
17.
Ann Rheum Dis ; 80(12): 1604-1614, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34663597

RESUMO

Crystal structures activate innate immune cells, especially macrophages and initiate inflammatory responses. We aimed to understand the role of the mechanosensitive TRPV4 channel in crystal-induced inflammation. Real-time RT-PCR, RNAscope in situ hybridisation, and Trpv4eGFP mice were used to examine TRPV4 expression and whole-cell patch-clamp recording and live-cell Ca2+ imaging were used to study TRPV4 function in mouse synovial macrophages and human peripheral blood mononuclear cells (PBMCs). Both genetic deletion and pharmacological inhibition approaches were used to investigate the role of TRPV4 in NLRP3 inflammasome activation induced by diverse crystals in vitro and in mouse models of crystal-induced pain and inflammation in vivo. TRPV4 was functionally expressed by synovial macrophages and human PBMCs and TRPV4 expression was upregulated by stimulation with monosodium urate (MSU) crystals and in human PBMCs from patients with acute gout flares. MSU crystal-induced gouty arthritis were significantly reduced by either genetic ablation or pharmacological inhibition of TRPV4 function. Mechanistically, TRPV4 mediated the activation of NLRP3 inflammasome by diverse crystalline materials but not non-crystalline NLRP3 inflammasome activators, driving the production of inflammatory cytokine interleukin-1ß which elicited TRPV4-dependent inflammatory responses in vivo. Moreover, chemical ablation of the TRPV1-expressing nociceptors significantly attenuated the MSU crystal-induced gouty arthritis. In conclusion, TRPV4 is a common mediator of inflammatory responses induced by diverse crystals through NLRP3 inflammasome activation in macrophages. TRPV4-expressing resident macrophages are critically involved in MSU crystal-induced gouty arthritis. A neuroimmune interaction between the TRPV1-expressing nociceptors and the TRPV4-expressing synovial macrophages contributes to the generation of acute gout flares.


Assuntos
Artralgia/metabolismo , Artrite/metabolismo , Artropatias por Cristais/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Nociceptores/metabolismo , Canais de Cátion TRPV/genética , Adulto , Animais , Artralgia/imunologia , Artrite/imunologia , Artrite Gotosa/imunologia , Artrite Gotosa/metabolismo , Artropatias por Cristais/imunologia , Gota/imunologia , Gota/metabolismo , Humanos , Inflamassomos/imunologia , Inflamação , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Imagem Óptica , Técnicas de Patch-Clamp , Membrana Sinovial/citologia , Células THP-1 , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Ácido Úrico
18.
FASEB J ; 35(10): e21869, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34469026

RESUMO

The leucine-rich repeat-containing family 8 member A (LRRC8A) is an essential subunit of the volume-regulated anion channel (VRAC). VRAC is critical for cell volume control, but its broader physiological functions remain under investigation. Recent studies in the field indicate that Lrrc8a disruption in the brain astrocytes reduces neuronal excitability, impairs synaptic plasticity and memory, and protects against cerebral ischemia. In the present work, we generated brain-wide conditional LRRC8A knockout mice (LRRC8A bKO) using NestinCre -driven Lrrc8aflox/flox excision in neurons, astrocytes, and oligodendroglia. LRRC8A bKO animals were born close to the expected Mendelian ratio and developed without overt histological abnormalities, but, surprisingly, all died between 5 and 9 weeks of age with a seizure phenotype, which was confirmed by video and EEG recordings. Brain slice electrophysiology detected changes in the excitability of pyramidal cells and modified GABAergic inputs in the hippocampal CA1 region of LRRC8A bKO. LRRC8A-null hippocampi showed increased immunoreactivity of the astrocytic marker GFAP, indicating reactive astrogliosis. We also found decreased whole-brain protein levels of the GABA transporter GAT-1, the glutamate transporter GLT-1, and the astrocytic enzyme glutamine synthetase. Complementary HPLC assays identified reduction in the tissue levels of the glutamate and GABA precursor glutamine. Together, these findings suggest that VRAC provides vital control of brain excitability in mouse adolescence. VRAC deletion leads to a lethal phenotype involving progressive astrogliosis and dysregulation of astrocytic uptake and supply of amino acid neurotransmitters and their precursors.


Assuntos
Astrócitos/patologia , Gliose/mortalidade , Ácido Glutâmico/metabolismo , Proteínas de Membrana/fisiologia , Convulsões/mortalidade , Animais , Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/patologia , Feminino , Gliose/etiologia , Gliose/patologia , Transporte de Íons , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Convulsões/etiologia , Convulsões/patologia
19.
Front Cardiovasc Med ; 8: 662410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34434970

RESUMO

The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.

20.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34320366

RESUMO

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Remodelação Ventricular/fisiologia , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Miocárdio/metabolismo , Troponina T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...