Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 10(7): 1063-1080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33660952

RESUMO

To harness the full potential of human pluripotent stem cells (hPSCs) we combined instrumented stirred tank bioreactor (STBR) technology with the power of in silico process modeling to overcome substantial, hPSC-specific hurdles toward their mass production. Perfused suspension culture (3D) of matrix-free hPSC aggregates in STBRs was applied to identify and control process-limiting parameters including pH, dissolved oxygen, glucose and lactate levels, and the obviation of osmolality peaks provoked by high density culture. Media supplements promoted single cell-based process inoculation and hydrodynamic aggregate size control. Wet lab-derived process characteristics enabled predictive in silico modeling as a new rational for hPSC cultivation. Consequently, hPSC line-independent maintenance of exponential cell proliferation was achieved. The strategy yielded 70-fold cell expansion in 7 days achieving an unmatched density of 35 × 106 cells/mL equivalent to 5.25 billion hPSC in 150 mL scale while pluripotency, differentiation potential, and karyotype stability was maintained. In parallel, media requirements were reduced by 75% demonstrating the outstanding increase in efficiency. Minimal input to our in silico model accurately predicts all main process parameters; combined with calculation-controlled hPSC aggregation kinetics, linear process upscaling is also enabled and demonstrated for up to 500 mL scale in an independent bioreactor system. Thus, by merging applied stem cell research with recent knowhow from industrial cell fermentation, a new level of hPSC bioprocessing is revealed fueling their automated production for industrial and therapeutic applications.


Assuntos
Técnicas de Cultura de Células , Células-Tronco Pluripotentes , Reatores Biológicos , Diferenciação Celular , Simulação por Computador , Meios de Cultura , Humanos , Células-Tronco Pluripotentes/citologia
2.
Nat Protoc ; 16(3): 1581-1599, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33580232

RESUMO

The endodermal germ layer gives rise to respiratory epithelium, hepatocytes, pancreatic cells and intestinal lineages, among other cell types. These lineages can be differentiated from human pluripotent stem cells (hPSCs) via a common definitive endoderm (DE) intermediate that is characterized by the co-expression of the cell surface markers CXCR4, c-KIT and EPCAM and the transcription factors SOX17 and FOXA2. Here we provide a detailed protocol for mass production of DE from hPSCs in scalable and easy-to-handle suspension culture using a rotating Erlenmeyer flask or a sophisticated, fully controllable, 150-ml stirred tank bioreactor. This protocol uses two different media formulations that are chemically defined and xeno free and therefore good manufacturing practice ready. Our protocol allows for efficient hPSC-derived DE specification in multicellular aggregates within 3 days and generates up to 1 × 108 DE cells with >92% purity in one differentiation batch when using the bioreactor. The hPSC-derived DE cells that are generated can be cryopreserved for later downstream differentiation into various endodermal lineages. This protocol should facilitate the flexible production of mature DE derivatives for physiologically relevant disease models, high-throughput drug screening, toxicology testing and cellular therapies.


Assuntos
Técnicas de Cultura de Células/métodos , Endoderma/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Criopreservação/métodos , Meios de Cultura , Endoderma/crescimento & desenvolvimento , Endoderma/metabolismo , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia
3.
Stem Cell Res ; 48: 101988, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32950024

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by defects in motile cilia and is known to occur in about 1 in 20,000 live births (Horani and Ferkol, 2018). Among the many genes associated with PCD, NME5, a gene encoding a protein involved in ciliary function, was recently reported to be involved in PCD (Anderegg et al., 2019; Cho et al., 2020). We have established two human induced pluripotent stem cell clones from a PCD patient carrying a deletion in the NME5 gene (c.415delA (p.Ile139Tyrfs*8)).


Assuntos
Transtornos da Motilidade Ciliar , Células-Tronco Pluripotentes Induzidas , Cílios , Transtornos da Motilidade Ciliar/genética , Células Clonais , Homozigoto , Humanos , Mutação , Nucleosídeo NM23 Difosfato Quinases , Deleção de Sequência
4.
Stem Cell Res ; 46: 101850, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32464346

RESUMO

Cyclin O (CCNO) is involved in cell cycle regulation and mutations of CCNO are linked to the rare genetic disease primary ciliary dyskinesia (PCD). Mutations in CCNO are associated with reduced cilia number and cilia agenesis on epithelia of the respiratory tract. This article deals with the description of two hiPSC lines generated from a PCD patient carrying a mutation in exon 1 of the CCNO gene. The lines offer a valuable tool for in vitro modeling PCD pathophysiology.


Assuntos
Transtornos da Motilidade Ciliar , Células-Tronco Pluripotentes Induzidas , Cílios/genética , Transtornos da Motilidade Ciliar/genética , Éxons/genética , Homozigoto , Humanos , Mutação
5.
Stem Cell Res ; 46: 101848, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32470793

RESUMO

Dynein axonemal heavy chain 5 (DNAH5) is part of a microtubule-associated protein complex found within the cilia of the lung. Mutations in the DNAH5 gene lead to impaired ciliary function and are linked to primary ciliary dyskinesia (PCD), a rare autosomal recessive disorder. We established two human induced pluripotent stem cell (hiPSC) lines generated from a patient with PCD and homozygous mutation in the corresponding DNAH5 gene. These cell lines represent an excellent tool for modeling the ciliary dysfunction in PCD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Síndrome de Kartagener , Dineínas do Axonema/genética , Homozigoto , Humanos , Síndrome de Kartagener/genética , Mutação
6.
Stem Cell Res ; 42: 101659, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31791010

RESUMO

Tumor protein p63 (p63) encodes for a transcription factor of the p53 family and is a marker for respiratory basal cells. Based on a NKX2.1 knock-in reporter cell line from human induced pluripotent stem cells (hiPSCs) (MHHi06-A-2) we established a NKX2.1/p63 double transgenic knock-in reporter cell line using TALEN technology. The reporter enables the optimization and monitoring of hiPSC differentiation towards NKX2.1/p63 double positive cells as well as enrichment for single or double positive cells.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Fator Nuclear 1 de Tireoide/genética , Diferenciação Celular , Linhagem Celular , Humanos , Transfecção
7.
Cells ; 8(12)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817235

RESUMO

For the production and bio-banking of differentiated derivatives from human pluripotent stem cells (hPSCs) in large quantities for drug screening and cellular therapies, well-defined and robust procedures for differentiation and cryopreservation are required. Definitive endoderm (DE) gives rise to respiratory and digestive epithelium, as well as thyroid, thymus, liver, and pancreas. Here, we present a scalable, universal process for the generation of DE from human-induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs). Optimal control during the differentiation process was attained in chemically-defined and xeno-free suspension culture, and high flexibility of the workflow was achieved by the introduction of an efficient cryopreservation step at the end of DE differentiation. DE aggregates were capable of differentiating into hepatic-like, pancreatic, intestinal, and lung progenitor cells. Scale-up of the differentiation process using stirred-tank bioreactors enabled production of large quantities of DE aggregates. This process provides a useful advance for versatile applications of DE lineages, in particular for cell therapies and drug screening.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Diferenciação Celular , Linhagem da Célula , Endoderma/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Linhagem Celular , Criopreservação/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo
8.
Nat Neurosci ; 19(9): 1256-67, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27428653

RESUMO

Modeling amyotrophic lateral sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal spinal tissues and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology.


Assuntos
Envelhecimento , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores/citologia , Neurogênese/fisiologia , Esclerose Lateral Amiotrófica/fisiopatologia , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurogênese/genética
9.
Stem Cells Transl Med ; 5(11): 1447-1460, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27400789

RESUMO

: Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration; however, their availability and capability of self-renewal are limited. Recent discoveries of somatic cell reprogramming may be used to overcome these challenges. We hypothesized that induced pluripotent stem cells (iPSCs) that were differentiated into MSCs could be used for bone regeneration. Short-term exposure of embryoid bodies to transforming growth factor-ß was used to direct iPSCs toward MSC differentiation. During this process, two types of iPSC-derived MSCs (iMSCs) were identified: early (aiMSCs) and late (tiMSCs) outgrowing cells. The transition of iPSCs toward MSCs was documented using MSC marker flow cytometry. Both types of iMSCs differentiated in vitro in response to osteogenic or adipogenic supplements. The results of quantitative assays showed that both cell types retained their multidifferentiation potential, although aiMSCs demonstrated higher osteogenic potential than tiMSCs and bone marrow-derived MSCs (BM-MSCs). Ectopic injections of BMP6-overexpressing tiMSCs produced no or limited bone formation, whereas similar injections of BMP6-overexpressing aiMSCs resulted in substantial bone formation. Upon orthotopic injection into radial defects, all three cell types regenerated bone and contributed to defect repair. In conclusion, MSCs can be derived from iPSCs and exhibit self-renewal without tumorigenic ability. Compared with BM-MSCs, aiMSCs acquire more of a stem cell phenotype, whereas tiMSCs acquire more of a differentiated osteoblast phenotype, which aids bone regeneration but does not allow the cells to induce ectopic bone formation (even when triggered by bone morphogenetic proteins), unless in an orthotopic site of bone fracture. SIGNIFICANCE: Mesenchymal stem cells (MSCs) are currently the most established cells for skeletal tissue engineering and regeneration of various skeletal conditions; however, availability of autologous MSCs is very limited. This study demonstrates a new method to differentiate human fibroblast-derived induced pluripotent stem cells (iPSCs) to cells with MSC properties, which we comprehensively characterized including differentiation potential and transcriptomic analysis. We showed that these iPS-derived MSCs are able to regenerate nonunion bone defects in mice more efficiently than bone marrow-derived human MSCs when overexpressing BMP6 using a nonviral transfection method.

10.
Stem Cells ; 33(8): 2537-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25869002

RESUMO

Pluripotent stem cell-derived retinal pigment epithelial (RPE) cells are currently being tested for cell replacement in late-stage age-related macular degeneration (AMD). However, preserving vision at early-stages may also be possible. Here, we demonstrate that transplantation of neural progenitor cells (NPCs) derived from induced pluripotent stem cells (iNPCs) limits disease progression in the Royal College of Surgeons rat, a preclinical model of AMD. Grafted-iNPCs survived, remained undifferentiated, and distributed extensively in a laminar fashion in the subretinal space. Retinal pathology resulting from the accumulation of undigested photoreceptor outer segments (POS) was significantly reduced in iNPC-injected rats compared with controls. Phagosomes within grafted-iNPCs contained POS, suggesting that iNPCs had compensated for defective POS phagocytosis by host-RPE. The iNPC-treated eyes contained six to eight rows of photoreceptor nuclei that spanned up to 5 mm in length in transverse retinal sections, compared with only one row of photoreceptors in controls. iNPC treatment fully preserved visual acuity measured by optokinetic response. Electrophysiological recordings revealed that retina with the best iNPC-protected areas were 140-fold more sensitive to light stimulation than equivalent areas of contralateral eyes. The results described here support the therapeutic utility of iNPCs as autologous grafts for early-stage of AMD.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Macular/terapia , Células-Tronco Neurais/metabolismo , Transplante de Células-Tronco , Visão Ocular , Animais , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Ratos
11.
Hum Mol Genet ; 24(11): 3257-71, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740845

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disease, caused by expansion of polyglutamine repeats in the Huntingtin gene, with longer expansions leading to earlier ages of onset. The HD iPSC Consortium has recently reported a new in vitro model of HD based on the generation of induced pluripotent stem cells (iPSCs) from HD patients and controls. The current study has furthered the disease in a dish model of HD by generating new non-integrating HD and control iPSC lines. Both HD and control iPSC lines can be efficiently differentiated into neurons/glia; however, the HD-derived cells maintained a significantly greater number of nestin-expressing neural progenitor cells compared with control cells. This cell population showed enhanced vulnerability to brain-derived neurotrophic factor (BDNF) withdrawal in the juvenile-onset HD (JHD) lines, which appeared to be CAG repeat-dependent and mediated by the loss of signaling from the TrkB receptor. It was postulated that this increased death following BDNF withdrawal may be due to glutamate toxicity, as the N-methyl-d-aspartate (NMDA) receptor subunit NR2B was up-regulated in the cultures. Indeed, blocking glutamate signaling, not just through the NMDA but also mGlu and AMPA/Kainate receptors, completely reversed the cell death phenotype. This study suggests that the pathogenesis of JHD may involve in part a population of 'persistent' neural progenitors that are selectively vulnerable to BDNF withdrawal. Similar results were seen in adult hippocampal-derived neural progenitors isolated from the BACHD model mouse. Together, these results provide important insight into HD mechanisms at early developmental time points, which may suggest novel approaches to HD therapeutics.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Ácido Glutâmico/fisiologia , Doença de Huntington/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/fisiologia , Idade de Início , Animais , Apoptose , Sobrevivência Celular , Células Cultivadas , Humanos , Doença de Huntington/patologia , Camundongos
12.
Stem Cells Transl Med ; 3(12): 1429-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25298370

RESUMO

Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for many applications, including disease modeling to elucidate mechanisms involved in disease pathogenesis, drug screening, and ultimately regenerative medicine therapies. A frequently used starting source of cells for reprogramming has been dermal fibroblasts isolated from skin biopsies. However, numerous repositories containing lymphoblastoid cell lines (LCLs) generated from a wide array of patients also exist in abundance. To date, this rich bioresource has been severely underused for iPSC generation. We first attempted to create iPSCs from LCLs using two existing methods but were unsuccessful. Here we report a new and more reliable method for LCL reprogramming using episomal plasmids expressing pluripotency factors and p53 shRNA in combination with small molecules. The LCL-derived iPSCs (LCL-iPSCs) exhibited identical characteristics to fibroblast-derived iPSCs (fib-iPSCs), wherein they retained their genotype, exhibited a normal pluripotency profile, and readily differentiated into all three germ-layer cell types. As expected, they also maintained rearrangement of the heavy chain immunoglobulin locus. Importantly, we also show efficient iPSC generation from LCLs of patients with spinal muscular atrophy and inflammatory bowel disease. These LCL-iPSCs retained the disease mutation and could differentiate into neurons, spinal motor neurons, and intestinal organoids, all of which were virtually indistinguishable from differentiated cells derived from fib-iPSCs. This method for reliably deriving iPSCs from patient LCLs paves the way for using invaluable worldwide LCL repositories to generate new human iPSC lines, thus providing an enormous bioresource for disease modeling, drug discovery, and regenerative medicine applications.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Linfócitos/citologia , Linfócitos/metabolismo , Linhagem Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Rearranjo Gênico de Cadeia Pesada de Linfócito B/genética , Humanos , Neurônios/citologia , Neurônios/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/genética
13.
Stem Cells Transl Med ; 3(9): 1002-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25069777

RESUMO

Limbal epithelial stem cell (LESC) deficiency (LSCD) leads to corneal abnormalities resulting in compromised vision and blindness. LSCD can be potentially treated by transplantation of appropriate cells, which should be easily expandable and bankable. Induced pluripotent stem cells (iPSCs) are a promising source of transplantable LESCs. The purpose of this study was to generate human iPSCs and direct them to limbal differentiation by maintaining them on natural substrata mimicking the native LESC niche, including feederless denuded human amniotic membrane (HAM) and de-epithelialized corneas. These iPSCs were generated with nonintegrating vectors from human primary limbal epithelial cells. This choice of parent cells was supposed to enhance limbal cell differentiation from iPSCs by partial retention of parental epigenetic signatures in iPSCs. When the gene methylation patterns were compared in iPSCs to parental LESCs using Illumina global methylation arrays, limbal-derived iPSCs had fewer unique methylation changes than fibroblast-derived iPSCs, suggesting retention of epigenetic memory during reprogramming. Limbal iPSCs cultured for 2 weeks on HAM developed markedly higher expression of putative LESC markers ABCG2, ΔNp63α, keratins 14, 15, and 17, N-cadherin, and TrkA than did fibroblast iPSCs. On HAM culture, the methylation profiles of select limbal iPSC genes (including NTRK1, coding for TrkA protein) became closer to the parental cells, but fibroblast iPSCs remained closer to parental fibroblasts. On denuded air-lifted corneas, limbal iPSCs even upregulated differentiated corneal keratins 3 and 12. These data emphasize the importance of the natural niche and limbal tissue of origin in generating iPSCs as a LESC source with translational potential for LSCD treatment.


Assuntos
Técnicas de Cultura de Células/métodos , Epitélio Corneano/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Limbo da Córnea/citologia , Diferenciação Celular/fisiologia , Humanos , Imuno-Histoquímica , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
14.
J Comp Neurol ; 522(12): 2707-28, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24610630

RESUMO

Transplantation of human neural progenitor cells (NPCs) into the brain or spinal cord to replace lost cells, modulate the injury environment, or create a permissive milieu to protect and regenerate host neurons is a promising therapeutic strategy for neurological diseases. Deriving NPCs from human fetal tissue is feasible, although problematic issues include limited sources and ethical concerns. Here we describe a new and abundant source of NPCs derived from human induced pluripotent stem cells (iPSCs). A novel chopping technique was used to transform adherent iPSCs into free-floating spheres that were easy to maintain and were expandable (EZ spheres) (Ebert et al. [2013] Stem Cell Res 10:417-427). These EZ spheres could be differentiated towards NPC spheres with a spinal cord phenotype using a combination of all-trans retinoic acid (RA) and epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2) mitogens. Suspension cultures of NPCs derived from human iPSCs or fetal tissue have similar characteristics, although they were not similar when grown as adherent cells. In addition, iPSC-derived NPCs (iNPCs) survived grafting into the spinal cord of athymic nude rats with no signs of overgrowth and with a very similar profile to human fetal-derived NPCs (fNPCs). These results suggest that human iNPCs behave like fNPCs and could thus be a valuable alternative for cellular regenerative therapies of neurological diseases.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Medula Espinal/citologia , Análise de Variância , Animais , Aquaporina 4/metabolismo , Astrócitos/fisiologia , Humanos , Antígeno Ki-67/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/transplante , Neurônios/metabolismo , Ratos , Ratos Nus , Medula Espinal/cirurgia , Transcriptoma/fisiologia
15.
Stem Cells Dev ; 23(13): 1464-78, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24559391

RESUMO

Skeletal dysplasias (SDs) are caused by abnormal chondrogenesis during cartilage growth plate differentiation. To study early stages of aberrant cartilage formation in vitro, we generated the first induced pluripotent stem cells (iPSCs) from fibroblasts of an SD patient with a lethal form of metatropic dysplasia, caused by a dominant mutation (I604M) in the calcium channel gene TRPV4. When micromasses were grown in chondrogenic differentiation conditions and compared with control iPSCs, mutant TRPV4-iPSCs showed significantly (P<0.05) decreased expression by quantitative real-time polymerase chain reaction of COL2A1 (IIA and IIB forms), SOX9, Aggrecan, COL10A1, and RUNX2, all of which are cartilage growth plate markers. We found that stimulation with BMP2, but not TGFß1, up-regulated COL2A1 (IIA and IIB) and SOX9 gene expression, only in control iPSCs. COL2A1 (Collagen II) expression data were confirmed at the protein level by western blot and immunofluorescence microscopy. TRPV4-iPSCs showed only focal areas of Alcian blue stain for proteoglycans, while in control iPSCs the stain was seen throughout the micromass sample. Similar staining patterns were found in neonatal cartilage from control and patient samples. We also found that COL1A1 (Collagen I), a marker of osteogenic differentiation, was significantly (P<0.05) up-regulated at the mRNA level in TRPV4-iPSCs when compared with the control, and confirmed at the protein level. Collagen I expression in the TRPV4 model also may correlate with abnormal staining patterns seen in patient tissues. This study demonstrates that an iPSC model can recapitulate normal chondrogenesis and that mutant TRPV4-iPSCs reflect molecular evidence of aberrant chondrogenic developmental processes, which could be used to design therapeutic approaches for disorders of cartilage.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Colágeno Tipo I/genética , Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Sequência de Bases , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Análise Mutacional de DNA , Nanismo/genética , Nanismo/patologia , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mutação de Sentido Incorreto , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Canais de Cátion TRPV/genética
16.
Exp Neurol ; 254: 90-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440640

RESUMO

Assessing the efficacy of human stem cell transplantation in rodent models is complicated by the significant immune rejection that occurs. Two recent reports have shown conflicting results using neonatal tolerance to xenografts in rats. Here we extend this approach to mice and assess whether neonatal tolerance can prevent the rapid rejection of xenografts. In three strains of neonatal immune-intact mice, using two different brain transplant regimes and three independent stem cell types, we conclusively show that there is rapid rejection of the implanted cells. We also address specific challenges associated with the generation of humanized mouse models of disease.


Assuntos
Rejeição de Enxerto/imunologia , Xenoenxertos/imunologia , Doença de Huntington/terapia , Tolerância Imunológica/imunologia , Células-Tronco Neurais/imunologia , Células-Tronco Neurais/transplante , Animais , Animais Recém-Nascidos , Animais não Endogâmicos , Células Cultivadas , Corpo Estriado/citologia , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/imunologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Transplante Heterólogo
17.
Sci Transl Med ; 5(208): 208ra149, 2013 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-24154603

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat-containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-α, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Expansão das Repetições de DNA/genética , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Proteínas/genética , RNA/metabolismo , Proteína C9orf72 , Éxons/genética , Técnicas de Silenciamento de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , RNA/biossíntese , RNA/genética , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...