Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 9-16, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953590

RESUMO

Soluble epoxide hydrolase (sEH) inhibition has currently emerged as a therapeutic target in the treatment of various neuroinflammatory neurodegenerative diseases, including multiple sclerosis. Previously, we reported that treatment of mice with a sEH-selective inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea; TPPU), ameliorated chronic experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein 35-55 peptide immunization followed by injection of pertussis toxin to mice via regulating pro-inflammatory and anti-inflammatory pathways in the central nervous system. This study tested the hypothesis that the pro-inflammatory G protein-coupled receptor (GPR) 75 and anti-apoptotic phospholipase C (PLC) signaling pathways also contribute to the ameliorating effect of TPPU on chronic EAE. Brains and spinal cords of phosphate-buffered saline-, dimethyl sulfoxide-, or TPPU (3 mg/kg)-treated mice were used for the measurement of sEH, GPR75, Gaq/11, activator protein (AP)-1, PLC ß4, phosphoinositide 3-kinase (PI3K) p85a, Akt1, mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, cyclic adenosine monophosphate-response element-binding protein (CREB) 1, B-cell lymphoma (Bcl)-2, semaphorin (SEMA) 3A, and myelin proteolipid protein (PLP) expression and/or activity by using the immunoblotting method. Expression of sEH, GPR75, Gaq/11, c-jun, phosphorylated c-Jun, and SEMA3A was lower, while PLCß4, phosphorylated PI3K p85a, phosphorylated Akt1, phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated CREB1, Bcl-2, and myelin PLP expression was higher in the tissues of TPPU (3 mg/kg)-treated mice as compared with the EAE and vehicle control groups. Inhibition of sEH by TPPU ameliorates chronic EAE through suppressing pro-inflammatory GPR75/Gaq/11/AP-1 pathway and reducing expression of the remyelination inhibitor, SEMA3A, as well as increasing anti-apoptotic PLC/PI3K/Akt1/MEK1/2/ERK1/2/CREB1/Bcl-2 pathway activity and myelin PLP expression.


Assuntos
Encefalomielite Autoimune Experimental , Fosfolipases , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Camundongos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Camundongos Endogâmicos C57BL , Proteína Proteolipídica de Mielina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Semaforina-3A , Receptores Acoplados a Proteínas G/metabolismo
2.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 15-23, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807339

RESUMO

The nucleotide-binding oligomerization domain-like receptor X1 (NLRX1) has been associated with various anti-inflammatory mechanisms. We investigated whether the NLRX1 ligand docosahexaenoic acid (DHA) ameliorates lipopolysaccharide (LPS)-induced inflammatory hyperalgesia by interacting with tumor necrosis factor receptor-associated factor 6 (TRAF6)/inhibitor of kB (IkB) kinase (IKK)/IkB-a/nuclear factor-κB (NF-κB) signaling pathway in the central nervous system. Reaction time to thermal stimuli within 30 seconds was measured in male mice injected with saline, lipopolysaccharide (LPS), and/or DHA after 6 hours using the hot plate test. Co-immunoprecipitation and immunoblotting studies were performed to determine the activation of the TRAF6/IKK/IkB-a/NF-kB pathway in the brains and spinal cords of animals. Latency to the thermal stimulus was reduced by 30% in LPS-injected endotoxemic mice compared with saline-injected mice. Treatment with DHA significantly improved latency compared with endotoxemic mice. In the brain and spinal cord of LPS-injected mice, treatment with DHA also prevented the increase in the expression and/or activity of (1) IKKa/IKKß, IKKg, and K63 U in the NLRX1-immunoprecipitated tissues, (2) IKKa/IKKß, K63 U, and K48 U in the IKKg-immunoprecipitated tissues, and (3) IkB-α, NF-kB p65, and interleukin-1ß associated with decreased IkB-α expression. These findings suggest that inhibition of IKK/IkB-a/NF-kB signaling by dissociation of NLRX1 from TRAF6 in response to LPS treatment contributes to the protective effect of DHA against inflammatory hyperalgesia.


Assuntos
Quinase I-kappa B , NF-kappa B , Masculino , Camundongos , Animais , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Quinase I-kappa B/farmacologia , Lipopolissacarídeos/farmacologia , Fator 6 Associado a Receptor de TNF/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Ligantes , Transdução de Sinais , Proteínas Mitocondriais/metabolismo
3.
J Cardiovasc Pharmacol ; 80(2): 276-293, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35323151

RESUMO

ABSTRACT: The orphan receptor, G protein-coupled receptor (GPR) 75, which has been shown to mediate various effects of 20-hydroxyeicosatetraenoic acid (20-HETE), is considered as a therapeutic target in the treatment of cardiovascular diseases in which changes in the production of 20-HETE play a key role in their pathogenesis. Our previous studies showed that 20-HETE mimetic, N -(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), protects against vascular hyporeactivity, hypotension, tachycardia, and arterial inflammation induced by lipopolysaccharide (LPS) in rats. This study tested the hypothesis that the GPR75 signaling pathway mediates these effects of 5,14-HEDGE in response to systemic exposure to LPS. Mean arterial pressure reduced by 33 mm Hg, and heart rate increased by 102 beats/min at 4 hours following LPS injection. Coimmunoprecipitation studies demonstrated that (1) the dissociation of GPR75/Gα q/11 and GPR kinase interactor 1 (GIT1)/protein kinase C (PKC) α, the association of GPR75/GIT1, large conductance voltage and calcium-activated potassium subunit ß (MaxiKß)/PKCα, MaxiKß/proto-oncogene tyrosine-protein kinase (c-Src), and epidermal growth factor receptor (EGFR)/c-Src, MaxiKß, and EGFR tyrosine phosphorylation were decreased, and (2) the association of GIT1/c-Src was increased in the arterial tissues of rats treated with LPS. The LPS-induced changes were prevented by 5,14-HEDGE. N -[20-Hydroxyeicosa-6( Z ),15( Z )-dienoyl]glycine, a 20-HETE antagonist, reversed the effects of 5,14-HEDGE in the arterial tissues of LPS-treated rats. Thus, similar to 20-HETE, by binding to GPR75 and activating the Gα q/11 /PKCα/MaxiKß, GIT1/PKCα/MaxiKß, GIT1/c-Src/MaxiKß, and GIT1/c-Src/EGFR signaling pathways, 5,14-HEDGE may exert its protective effects against LPS-induced hypotension and tachycardia associated with vascular hyporeactivity and arterial inflammation.


Assuntos
Arterite , Hipotensão , Choque Séptico , Animais , Proteínas de Ciclo Celular/metabolismo , Receptores ErbB/metabolismo , Glicina , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipotensão/induzido quimicamente , Hipotensão/prevenção & controle , Lipopeptídeos , Lipopolissacarídeos/toxicidade , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Ratos , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Choque Séptico/prevenção & controle , Transdução de Sinais , Taquicardia , Tirosina/farmacologia , Tirosina/uso terapêutico
4.
J Cardiovasc Pharmacol ; 79(3): 355-367, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34840266

RESUMO

ABSTRACT: The present study aimed to explore the contribution of mammalian target of rapamycin (mTOR) in deoxycorticosterone acetate (DOCA) salt-induced hypertension and related pathophysiological changes in cardiovascular and renal tissues. DOCA salt loading resulted in an increase in systolic blood pressure, diastolic blood pressure, and mean blood pressure along with the activity of ribosomal protein S6, the effector protein of mTOR. Treatment with rapamycin, the selective inhibitor of mTOR, initiated at the fourth week of DOCA- salt administration normalized the systolic blood pressure and attenuated ribosomal protein S6 activity in the heart, aorta, and kidney. Cardiac and vascular hypertrophy, oxidative stress, and infiltration of macrophages (CD68+), the marker of inflammation, were also reduced in rapamycin-treated, DOCA-salt, hypertensive rats. In addition, renal hypertrophy and dysfunction were also reduced with rapamycin-treated hypertensive rats. Moreover, these pathophysiological changes in DOCA-salt hypertensive rats were associated with increased NADPH oxidase (NOX) activity, gp91phox (formerly NOX2) expression, ERK1/2, and p38 MAPK activities in the heart, aorta, and kidney were minimized by rapamycin. These data indicate that mTOR plays an important role in regulating blood pressure and the development of cardiovascular and renal pathophysiological changes, most likely due to increased NOX expression/activity, ERK1/2, and p38 MAPK activity with macrophages infiltration in the heart, kidney, and aorta. Pharmacological inhibition of mTOR and related signaling pathways could serve as a novel target for the treatment of hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Acetatos/efeitos adversos , Animais , Pressão Sanguínea , Acetato de Desoxicorticosterona/efeitos adversos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipertrofia , Inflamação , Masculino , Mamíferos/metabolismo , Estresse Oxidativo , Ratos , Proteína S6 Ribossômica/metabolismo , Sirolimo/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Can J Physiol Pharmacol ; 99(4): 418-426, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33769089

RESUMO

It has been clearly indicated that osteoarthritis (OA) is an inflammatory and degenerative disease that could be promoted by Rho-kinase (ROCK); however, little is known about the role of ROCK/inhibitor κB alpha (IκB-α)/nuclear factor-κB (NF-κB) p65 pathway activation in interleukin-1ß (IL-1ß) induced inflammatory response and oxidative stress in primary human chondrocytes. To test this hypothesis, we focused on determining ROCK-II, IκB-α, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), p22phox, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subtype 4 (NOX4) protein expression, ROCK-II activity, NADPH oxidase levels, and total antioxidant capacity (TAC) in the presence and absence of ROCK-inhibitor fasudil. IL-1ß (2 ng·mL-1, 24 h) increased the expression of ROCK-II, p-IκB-α, NF-κB p65, p-NF-κB p65, IL-6, TNF-α, COX-2, and p22phox proteins, and decreased the expression of IκB-α, and the NOX4 protein level did not alter. ROCK activity and NADPH oxidase levels were increased, whereas the TAC was decreased by IL-1ß. Fasudil (10-5-10-7 M) reversed all these changes induced by IL-1ß. These results demonstrate that ROCK/IκB-α/NF-κB p65 pathway activation contributes to the IL-1ß-induced inflammatory response and oxidative stress, and thus, ROCK inhibition might be a beneficial treatment option for OA patients mainly based on its anti-inflammatory and antioxidant effects.


Assuntos
Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Interleucina-1beta/farmacologia , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho/metabolismo , Condrócitos/metabolismo , Humanos
6.
Can J Physiol Pharmacol ; 99(9): 921-934, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33641344

RESUMO

Neuroinflammation plays a critical role during sepsis triggered by microglial activation. Mammalian target of rapamycin (mTOR) has gained attraction in neuroinflammation, however, the mechanism remains unclear. Our goal was to assess the effects of mTOR inhibition by rapamycin on inflammation, microglial activation, oxidative stress, and apoptosis associated with the changes in the inhibitor-κB (IκB)-α/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α) pathway activity following a systemic challenge with lipopolysaccharide (LPS). Rats received saline (10 mL/kg), LPS (10 mg/kg), and (or) rapamycin (1 mg/kg) intraperitoneally. Inhibition of mTOR by rapamycin blocked phosphorylated form of ribosomal protein S6, NF-κB p65 activity by increasing degradation of IκB-α in parallel with HIF-1α expression increased by LPS in the kidney, heart, lung, and brain tissues. Rapamycin attenuated the increment in the expression of tumor necrosis factor-α and interleukin-1ß, the inducible nitric oxide synthase, gp91phox, and p47phox in addition to nitrite levels elicited by LPS in tissues or sera. Concomitantly, rapamycin treatment reduced microglial activation, brain expression of caspase-3, and Bcl-2-associated X protein while it increased expression of B cell lymphoma 2 induced by LPS. Overall, this study supports the hypothesis that mTOR contributes to the detrimental effect of LPS-induced systemic inflammatory response associated with neuroinflammation via IκB-α/NF-κB/HIF-1α signaling pathway.


Assuntos
Inflamação/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas I-kappa B/fisiologia , Lipopolissacarídeos , Masculino , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/fisiologia , Fator de Transcrição RelA/fisiologia
7.
Drug Dev Res ; 82(6): 815-825, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559150

RESUMO

Epoxyeicosatrienoic acids (EETs) have anti-inflammatory effects and soluble epoxide hydrolase (sEH) inhibition might be a useful therapeutic approach to manage inflammatory disorders. The purpose of the study was to investigate whether nucleotide-binding and oligomerization domain-like receptor (NLR) C4 inflammasome-related pro-inflammatory and anti-inflammatory signaling pathways in the central nervous system (CNS) participates in the effect of trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)urea (TPPU), a potent sEH inhibitor, to prevent hyperalgesia in the LPS-induced pain mouse model. The latency of pain within 30 s was measured by the hot plate test in male mice injected with saline, lipopolysaccharide (LPS) (10 mg/kg), and/or TPPU (0.3, 0.5, or 1 mg/kg) after 6 h. Hyperalgesia induced by LPS was associated with decreased 14,15-dihydroxyeicosatrienoic acid and interleukin (IL)-1ß levels and enhanced expression of NLRC4, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), caspase-1 p20, IL-1ß, and caspase-11 p20 in the brains and spinal cords of the animals. Besides the increased expression of nicotinamide adenine dinucleotide phosphate oxidase (NOX) subunits (gp91phox and p47phox ) and nitrotyrosine, a decrease in NLRC3, inducible nitric oxide synthase (iNOS), and neuronal NOS (nNOS) expression was also observed in the tissues of LPS-treated mice. TPPU at 0.5 mg/kg dose prevented the changes induced by LPS. Likely, decreased activity of pro-inflammatory NLRC4/ASC/pro-caspase-1 and caspase-11 inflammasomes and NOX in addition to enhanced levels of anti-inflammatory EETs and expression of NLRC3, iNOS, and nNOS in the CNS of mice participates in the protective effect of TPPU against LPS-induced hyperalgesia.


Assuntos
Inflamassomos , Lipopolissacarídeos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Epóxido Hidrolases/metabolismo , Epóxido Hidrolases/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Dor , Transdução de Sinais , Ureia
8.
Neurochem Res ; 46(3): 624-637, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33389386

RESUMO

A selective RXR agonist, bexarotene, has been shown to have anti-inflammatory, anti-nociceptive, and neuroprotective effects in several models of numerous neurological diseases characterized by systemic inflammation. The mechanisms underlying these effects remains unknown. To elucidate these mechanisms, we investigated whether the TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in the CNS mediates the effect of bexarotene to prevent hyperalgesia in the LPS-induced inflammatory pain mouse model. The reaction time to thermal stimuli within 30 s was evaluated by the hot plate test in male mice treated with saline, LPS (10 mg/kg), DMSO, and/or bexarotene (0.1, 1, 3, or 10 mg/kg) after 6 h. The latency to the thermal stimulus (18.11 ± 1.36 s) in the LPS-treated mice was significantly decreased by 30% compared with saline-treated mice (25.84 ± 1.99 s). Treatment with bexarotene only at a dose of 10 mg/kg showed a significant increase in the latency by 22.49 ± 1.00 s compared with LPS-treated mice. Bexarotene also prevented the reduction in RXRα protein expression associated with a rise in the expression of TLR4, MyD88, phosphorylated TAK1, NF-κB p65, phosphorylated NF-κB p65, COX-2, and IL-1ß proteins, in addition to COX-2 activity and levels of PGE2 and IL-1ß in the brains and spinal cords of the LPS-treated animals. Likely, decreased activity of TLR4/MyD88/TAK1/NF-κB/COX-2 signaling pathway in addition to increased pro-inflammatory cytokine formation in the CNS of mice participates in the protective effect of bexarotene against hyperalgesia induced by LPS.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Bexaroteno/uso terapêutico , Hiperalgesia/prevenção & controle , Receptores X de Retinoides/agonistas , Transdução de Sinais/efeitos dos fármacos , Animais , Ciclo-Oxigenase 2/metabolismo , Hiperalgesia/induzido quimicamente , Lipopolissacarídeos , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
9.
Inflammopharmacology ; 28(6): 1509-1524, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32128702

RESUMO

We aimed to determine the effect of soluble epoxide hydrolase (sEH) inhibition on chronic experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis (MS), associated with changes in inflammasome-dependent and -independent inflammatory and anti-inflammatory pathways in the CNS of mice. C57BL/6 mice were used to induce chronic EAE by using an injection of MOG35-55 peptide/PT. Animals were observed daily and scored for EAE signs for 25 days after immunization. Following the induction of EAE, the scores were increased after 9 days and reached peak value as determined by ≥ 2 or ≤ 3 with 8% mortality rate on day 17. On day 17, mice were administered daily PBS, DMSO, or TPPU (a potent sEH inhibitor) (1, 3, or 10 mg/kg) until the end of the study. TPPU only at 3 mg/kg dose decreased the AUC values calculated from EAE scores obtained during the disease compared to EAE and vehicle control groups. On day 25, TPPU also caused an increase in the PPARα/ß/γ and NLRC3 proteins and a decrease in the proteins of TLR4, MyD88, NF-κB p65, p-NF-κB p65, iNOS/nNOS, COX-2, NLRC4, ASC, caspase-1 p20, IL-1ß, caspase-11 p20, NOX subunits (gp91phox and p47phox), and nitrotyrosine in addition to 14,15-DHET and IL-1ß levels compared to EAE and vehicle control groups. Our findings suggest that pharmacological inhibition of sEH attenuates chronic EAE likely because of enhanced levels of anti-inflammatory EETs in addition to PPARα/ß/γ and NLRC3 expression associated with suppressed inflammatory TLR4/MyD88/NF-κB signalling pathway, NLRC4/ASC/pro-caspase-1 inflammasome, caspase-11 inflammasome, and NOX activity that are responsible for inflammatory mediator formation in the CNS of mice.


Assuntos
Anti-Inflamatórios/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Epóxido Hidrolases/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Transdução de Sinais/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
10.
Prostaglandins Other Lipid Mediat ; 145: 106377, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31586592

RESUMO

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.


Assuntos
Ácido Araquidônico/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Óxido Nítrico Sintase/metabolismo , Choque/metabolismo , Animais , Humanos , Inflamação/metabolismo , Inflamação/patologia , Choque/patologia
11.
Can J Physiol Pharmacol ; 97(12): 1193-1203, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31505123

RESUMO

Mammalian target of rapamycin (mTOR) has been recognized with potential immunomodulatory properties playing an important role in various physiopathological processes including ischemia-reperfusion (I/R) injury. I/R injury stimulate reactive oxygen and nitrogen species by activating nicotinamide adenine dinucleotide phosphate oxidase and inducible nitric oxide synthase, respectively. Controversial results have been obtained in different I/R models following localized I/R; however, the precise role of the mTOR signaling pathway remains undefined. The objective of the current study was to evaluate the role of the mTOR in oxidative-nitrosative stress and inflammation in hindlimb I/R-induced injury in target and remote organ injuries. In rats subjected to I/R, an increased expression of ribosomal protein S6 (rpS6), inhibitor κB (IκB)-α, nuclear factor-κB (NF-κB) p65, inducible nitric oxide synthase, cyclooxygenase 2, gp91phox, and levels of tumor necrosis factor α, nitrite, nitrotyrosine, malondialdehyde and the activities of myeloperoxidase and catalase in the tissues and (or) sera were detected. Treatment with rapamycin, a selective inhibitor of mTOR, reversed all the I/R-induced changes as manifested by its anti-inflammatory and antioxidant effects in kidney and gastrocnemius muscle of rats. Collectively, these findings suggest that rapamycin protects against I/R-induced oxidative-nitrosative stress and inflammation leading to organ injuries via suppression of mTOR/IκB-α/NF-κB signaling pathway.


Assuntos
Membro Posterior/irrigação sanguínea , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Biomarcadores/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Inibidor de NF-kappaB alfa/metabolismo , Ratos , Ratos Wistar , Proteína S6 Ribossômica/metabolismo , Fator de Transcrição RelA/metabolismo
12.
Clin Exp Pharmacol Physiol ; 46(2): 173-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30347478

RESUMO

We have previously demonstrated that the activation of the spleen tyrosine kinase (Syk)/inhibitory-κB (IκB)-α/nuclear factor-κB (NF-κB) p65 signalling pathway contributes to hypotension and inflammatory response in a rat models of zymosan (ZYM)-induced non-septic shock. The purpose of this study was to further examine the possible mechanism underlying the effect of inhibition of Syk by BAY61-3606 via NF-κB activity at the level of nuclear translocation regarding the production of vasodilator and proinflammatory mediators in lipopolysaccharide (LPS) (septic)- and ZYM (non-septic)-induced shock. Administration of LPS (10 mg/kg, ip) or ZYM (500 mg/kg, ip) to male Wistar rats decreased mean arterial pressure and increased heart rate that was associated with an increase in the activities of cyclooxygenase and nitric oxide synthase, tumour necrosis factor-α, and interleukin-8 levels, and NF-κB activation and nuclear translocation in sera and/or cardiovascular and renal tissues. BAY61-3606 (3 mg/kg, ip), the selective Syk inhibitor, given 1 hour after LPS- or ZYM injection reversed all the above-mentioned effects. These results suggest that Syk contributes to the LPS- or ZYM-induced hypotension and inflammation associated with transactivation of NF-κB in septic and non-septic shock.


Assuntos
Hipotensão/tratamento farmacológico , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Niacinamida/análogos & derivados , Pirimidinas/farmacologia , Choque Séptico/tratamento farmacológico , Quinase Syk/antagonistas & inibidores , Zimosan/farmacologia , Animais , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hipotensão/metabolismo , Hipotensão/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-8/metabolismo , Masculino , Inibidor de NF-kappaB alfa/metabolismo , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
13.
Clin Exp Pharmacol Physiol ; 45(2): 155-165, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28949404

RESUMO

Spleen tyrosine kinase (Syk), a non-receptor tyrosine kinase, plays an important role in allergic diseases and inflammation. Syk triggers several intracellular signalling cascades including Toll-like receptor signalling to activate inflammatory responses following fungal infection but the role of this enzyme in zymosan (ZYM)-induced non-septic shock and its impacts on hypotension and inflammation in rats is not well understood. This study was conducted to determine the effects of Syk inhibition on ZYM-induced alterations in the expression and/or activities of Syk, inhibitor ĸB (IĸB)-α, and nuclear factor-ĸB (NF-ĸB) p65. We also examined the effect of Syk inhibition on inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and tumour necrosis factor (TNF)-α, and activity of myeloperoxidase (MPO) that contribute to hypotension and inflammation. Administration of ZYM (500 mg/kg, ip) to male Wistar rats decreased blood pressure and increased heart rate. These changes were associated with increased expression and/or activities of Syk, NF-κB p65, iNOS and COX-2 and decreased expression of IκB-α with enhanced levels of nitrite, nitrotyrosine, 6-keto-PGF1α , and TNF-α and activity of MPO in renal, cardiac and vascular tissues. ZYM administration also elevated serum and tissue nitrite levels. The selective Syk inhibitor BAY 61-3606 (3 mg/kg, ip) given 1 hour after ZYM injection reversed all of these changes induced by ZYM. These results suggest that Syk/IĸB-α/NF-ĸB pathway activation contributes to hypotension and inflammation caused by the production of vasodilator and proinflammatory mediators in the zymosan-induced non-septic shock model.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Niacinamida/análogos & derivados , Pirimidinas/uso terapêutico , Choque/induzido quimicamente , Quinase Syk/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase I-kappa B/genética , Masculino , NF-kappa B/genética , Niacinamida/uso terapêutico , Ratos , Ratos Wistar , Choque/tratamento farmacológico , Quinase Syk/antagonistas & inibidores , Quinase Syk/genética , Zimosan/toxicidade
14.
Inflammation ; 41(1): 337-355, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29188497

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that can activate or inhibit the expression of many target genes by forming a heterodimer complex with the retinoid X receptor (RXR). The aim of this study was to investigate effects of bexarotene, a selective RXRα agonist, on the changes in renal, cardiac, hepatic, and pulmonary expression/activity of inducible nitric oxide synthase (iNOS) and cytochrome P450 (CYP) 4F6 in relation to PPARα/ß/γ-RXRα heterodimer formation in a rat model of septic shock. Rats were injected with dimethyl sulfoxide or bexarotene 1 h after administration of saline or lipopolysaccharide (LPS). Mean arterial pressure (MAP) and heart rate (HR) were recorded from rats, which had received either saline or LPS before and after 1, 2, 3, and 4 h. Serum iNOS, LTB4, myeloperoxidase (MPO), and lactate dehydrogenase (LDH) levels as well as tissue iNOS and CYP4F6 mRNA expression in addition to PPARα/ß/γ and RXRα proteins were measured. LPS-induced decrease in MAP and increase in HR were associated with a decrease in PPARα/ß/γ-RXRα heterodimer formation and CYP4F6 mRNA expression. LPS also caused an increase in systemic iNOS, LTB4, MPO, and LDH levels as well as iNOS mRNA expression. Bexarotene at 0.1 mg/kg (i.p.) prevented the LPS-induced changes, except tachycardia. The results suggest that increased formation of PPARα/ß/γ-RXRα heterodimers and CYP4F6 expression/activity in addition to decreased iNOS expression contributes to the beneficial effect of bexarotene to prevent the hypotension associated with inflammation and tissue injury during rat endotoxemia.


Assuntos
Pressão Arterial/efeitos dos fármacos , Hipotensão/prevenção & controle , Inflamação/tratamento farmacológico , Receptor X Retinoide alfa/agonistas , Choque Séptico/tratamento farmacológico , Tetra-Hidronaftalenos/farmacologia , Animais , Bexaroteno , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Hipotensão/induzido quimicamente , Hipotensão/metabolismo , Hipotensão/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/fisiopatologia , Rim/efeitos dos fármacos , Rim/metabolismo , L-Lactato Desidrogenase/sangue , Leucotrieno B4/sangue , Lipopolissacarídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Complexos Multiproteicos , Miocárdio/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/sangue , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Receptor X Retinoide alfa/metabolismo , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Choque Séptico/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
15.
Inflammation ; 41(1): 276-298, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29110153

RESUMO

Mammalian target of rapamycin (mTOR), a serine/threonine kinase regulate variety of cellular functions including cell growth, differentiation, cell survival, metabolism, and stress response, is now appreciated to be a central regulator of immune responses. Because mTOR inhibitors enhanced the anti-inflammatory activities of regulatory T cells and decreased the production of proinflammatory cytokines by macrophages, mTOR has been a pharmacological target for inflammatory diseases. In this study, we examined the role of mTOR in the production of proinflammatory and vasodilator mediators in zymosan-induced non-septic shock model in rats. To elucidate the mechanism by which mTOR contributes to non-septic shock, we have examined the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system caused by mTOR/mitogen-activated protein kinase kinase (MEK1)/extracellular signal-regulated kinase (ERK1/2)/inhibitor κB kinase (IKKß)/inhibitor of κB (IκB-α)/nuclear factor-κB (NF-κB) signalling pathway activation. After 1 h of zymosan (500 mg/kg, i.p.) administration to rats, mean arterial blood pressure (MAP) was decreased and heart rate (HR) was increased. These changes were associated with increased expression and/or activities of ribosomal protein S6, MEK1, ERK1/2, IKKß, IκB-α and NF-κB p65, and NADPH oxidase system activity in cardiovascular and renal tissues. Rapamycin (1 mg/kg, i.p.), a selective mTOR inhibitor, reversed these zymosan-induced changes in these tissues. These observations suggest that activation of mTOR/MEK1/ERK1/2/IKKß/IκB-α/NF-κB signalling pathway with proinflammatory and vasodilator mediator formation and NADPH oxidase system activity contributes to systemic inflammation in zymosan-induced non-septic shock. Thus, mTOR may be an optimal target for the treatment of the diseases characterized by the severe systemic inflammatory response.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas I-kappa B/metabolismo , Inflamação/prevenção & controle , MAP Quinase Quinase 1/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Zimosan , Animais , Pressão Arterial/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
16.
Eur J Pharmacol ; 802: 7-19, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28228357

RESUMO

Mammalian target of rapamycin (mTOR), a serine/threonine kinase plays an important role in various pathophysiological processes including cancer, metabolic diseases, and inflammation. Although mTOR participates in Toll-like receptor 4 signalling in different cell types, the role of this enzyme in sepsis pathogenesis and its effects on hypotension and inflammation in endotoxemic rats remains unclear. In this study we investigated the effects of mTOR inhibition on lipopolysaccharide (LPS)-induced changes on expressions and/or activities of ribosomal protein S6 (rpS6), an mTOR substrate, nuclear factor-κB (NF-κB) p65, inhibitor κB (IκB)-α, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 with production of nitric oxide, peroxynitrite, prostacyclin, and tumor necrosis factor (TNF)-α and activity of myeloperoxidase (MPO), which results in hypotension and inflammation. Injection of LPS (10mg/kg, i.p.) to male Wistar rats decreased blood pressure and increased heart rate that were associated with elevated nitrotyrosine, 6-keto-PGF1α, and TNF-α levels and MPO activity, and increased expressions and/or activities of rpS6, NF-κB p65, iNOS, and COX-2 and decreased expression of IκB-α in renal, cardiac, and vascular tissues. LPS also increased serum and tissue nitrite levels. Rapamycin (1mg/kg, i.p.) given one h after injection of LPS reversed these effects of LPS. These data suggest that the activation of mTOR/IκB-α/NF-κB pathway associated with vasodilator and proinflammatory mediator formation contributes to LPS-induced hypotension and inflammation.


Assuntos
Hipotensão/induzido quimicamente , Hipotensão/patologia , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição RelA/metabolismo , 6-Cetoprostaglandina F1 alfa/metabolismo , Animais , Pressão Arterial/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Epoprostenol/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hipotensão/metabolismo , Hipotensão/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/patologia , Masculino , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Ácido Peroxinitroso/biossíntese , Ratos , Ratos Wistar , Proteína S6 Ribossômica/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Tirosina/análogos & derivados , Tirosina/metabolismo
17.
Inflammation ; 40(2): 366-386, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27924425

RESUMO

The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3), an intracellular signaling molecule that senses many environmental- and pathogen/host-derived factors, has been implicated in the pathogenesis of several diseases associated with inflammation. It has been suggested that NLRP3 inflammasome inhibitors may have a therapeutic potential in the treatment of NLRP3-related inflammatory diseases. The aim of this study was to determine whether inhibition of NLRP3 inflammasome prevents inflammatory hyperalgesia induced by lipopolysaccharide (LPS) in mice as well as changes in expression/activity of nuclear factor κB (NF-κB), caspase-1/11, nicotinamide adenine dinucleotide phosphate oxidase (NOX), and endothelial/neuronal/inducible nitric oxide synthase (eNOS/nNOS/iNOS) that may regulate NLRP3/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/pro-caspase-1 inflammasome formation and activity by using a selective NLRP3 inflammasome inhibitor, MCC950. Male mice received saline (10 ml/kg; i.p.), LPS (10 mg/kg; i.p.), and/or MCC950 (3 mg/kg; i.p.). Reaction time to thermal stimuli within 1 min was evaluated after 6 h. The mice were killed and the brains, hearts, and lungs were collected for measurement of NF-κB, caspase-1, caspase-11, NLRP3, ASC, NOX subunits (gp91phox; NOX2), and p47phox; NOXO2), nitrotyrosine, eNOS, nNOS, iNOS, and ß-actin protein expression, NOS activity, and interleukin (IL)-1ß levels. LPS-induced hyperalgesia was associated with a decrease in eNOS, nNOS, and iNOS protein expression and activity as well as an increase in expression of NF-κB p65, caspase-1 p20, caspase-11 p20, NLRP3, ASC, gp91phox, p47phox, and nitrotyrosine proteins in addition to elevated IL-1ß levels. The LPS-induced changes were prevented by MCC950. The results suggest that inhibition of NLRP3/ASC/pro-caspase-1 inflammasome formation and activity prevents inflammatory hyperalgesia induced by LPS in mice as well as changes in NF-κB, caspase-11, NOX2, NOXO2, and eNOS/nNOS/iNOS expression/activity.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Hiperalgesia/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Sulfonas/uso terapêutico , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/metabolismo , Caspases/metabolismo , Caspases Iniciadoras , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Hiperalgesia/patologia , Hiperalgesia/prevenção & controle , Indenos , Inflamassomos/química , Inflamassomos/efeitos dos fármacos , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase/metabolismo , Isoformas de Proteínas/metabolismo , Sulfonamidas , Sulfonas/administração & dosagem
18.
Inflamm Res ; 65(5): 367-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26875149

RESUMO

OBJECTIVES: We have previously demonstrated that downregulation of the MyD88/TAK1-dependent signaling pathway associated with increased CYP4A1 expression and 20-HETE formation participates in the protective effect of N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), a 20-HETE mimetic, against vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The aim of this study was to determine whether increased renal and cardiovascular expression of PPARα/ß/γ and RXRα associated with decreased expression and/or activity of AP-1 and importin-α3 participates in the protective effect of 5,14-HEDGE in response to systemic administration of lipopolysaccharide (LPS). METHODS: Conscious male Wistar rats received saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. Separate groups of LPS-treated rats were given 5,14-HEDGE (30 mg/kg) 1 h after injection of saline or LPS. The rats were killed 4 h after saline or LPS administration and the kidney, heart, thoracic aorta, and superior mesenteric artery were collected for measurement of protein expression. RESULTS: Blood pressure fell by 33 mmHg and heart rate rose by 72 beats/min at 4 h after LPS administration. In LPS-treated rats, tissue protein expressions of cytosolic/nuclear PPARα/ß/γ and nuclear RXRα, in addition to nuclear translocation of PPARα/ß/γ proteins, were decreased, while cytosolic/nuclear AP-1 subunit c-jun/phosphorylated c-jun and importin-α3 protein expression as well as their nuclear translocation were increased. The LPS-induced changes were prevented by 5,14-HEDGE. CONCLUSIONS: The results suggest that an increase in the expression of PPARα/ß/γ and RXRα as well as a decrease in AP-1 and importin-α3 expression/activity participates in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation during endotoxemia and thus have a beneficial effect in septic shock treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopeptídeos/farmacologia , Choque Séptico/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Modelos Animais de Doenças , Ácidos Hidroxieicosatetraenoicos , Hipotensão/tratamento farmacológico , Hipotensão/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopeptídeos/uso terapêutico , Lipopolissacarídeos , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Miocárdio/metabolismo , PPAR alfa/metabolismo , PPAR gama/metabolismo , PPAR beta/metabolismo , Ratos Wistar , Receptor X Retinoide alfa/metabolismo , Choque Séptico/tratamento farmacológico , Taquicardia/tratamento farmacológico , Taquicardia/metabolismo , Fator de Transcrição AP-1/metabolismo , alfa Carioferinas/metabolismo
19.
Eur J Clin Pharmacol ; 70(12): 1443-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25256070

RESUMO

BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitors block angiotensin II formation and release bradykinin, which is effective in the regulation of oxidoinflammatory injury. Some reports denote alterations in the effectiveness of ACE inhibitors in association with ACE insertion/deletion (I/D) gene polymorphisms. This study investigates the effects of ramipril on the oxidoinflammatory cytokines (IL-6, IL-8, TNF-alpha) and TnT (myocardial injury marker) and their alteration in association with ACE I/D gene polymorphisms. METHODS: The study group (n = 51) patients received ramipril before coronary artery bypass grafting (CABG), while patients not receiving ramipril (n = 51) constituted the controls. TNFα, IL-6, and IL-8 were evaluated using ELISA and TnT by electrochemiluminescence methods before the induction of anesthesia (t1), at the 20th minute following cross-clamping (t2), at the end of the operation (t3), and at the 24th hour from the commencement of anesthesia (t4). Genotyping was performed by PCR. RESULTS: Differences between the groups were significant at t4 for the TNFα and at t3 for IL-6 (p < 0.05). The TnT levels increased from t2 onward in the control group and were highest in t3. Changes in t3 and t4 values in both groups according to their t1 values were significant (p < 0.05). However, differences between the groups were insignificant (p > 0.05). The IL-6, IL-8, TNFα, and TnT serum levels had no correlation with the ACE I/D gene polymorphism. CONCLUSION: Low cytokine and TnT levels in the study group, especially after cross-clamping, may indicate the protective effect of ramipril from oxidoinflammatory injury. This effect did not appear to be associated with the ACE I/D gene polymorphism.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Cardiotônicos/farmacologia , Ponte de Artéria Coronária , Peptidil Dipeptidase A/genética , Ramipril/farmacologia , Idoso , Feminino , Traumatismos Cardíacos/sangue , Humanos , Interleucina-6/sangue , Interleucina-8/sangue , Masculino , Polimorfismo Genético , Troponina T/sangue , Fator de Necrose Tumoral alfa/sangue
20.
Inflamm Res ; 63(9): 741-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24915805

RESUMO

OBJECTIVES: We have previously demonstrated that a stable synthetic analog of 20-hydroxyeicosatetraenoic acid (20-HETE), N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE), which mimics the effects of endogenously produced 20-HETE, prevents vascular hyporeactivity, hypotension, tachycardia, inflammation, and mortality in a rodent model of septic shock. The present study was performed to determine whether decreased renal and cardiovascular expression and activity of myeloid differentiation factor 88 (MyD88)/transforming growth factor-activated kinase 1 (TAK1)/inhibitor of κB (IκB) kinase ß (IKKß)/IκB-α/nuclear factor-κB (NF-κB) pathway and reduced circulating microRNA (miR)-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in response to systemic administration of lipopolysaccharide (LPS). METHODS: Conscious male Wistar rats received saline (4 ml/kg) or LPS (10 mg/kg) at time 0. Blood pressure and heart rate were measured using a tail-cuff device. Separate groups of LPS-treated rats were given 5,14-HEDGE (30 mg/kg) 1 h after injection of saline or LPS. The rats were killed 4 h after LPS challenge and blood, kidney, heart, thoracic aorta, and superior mesenteric artery were collected for measurement of the protein expression. RESULTS: LPS-induced fall in blood pressure and rise in heart rate were associated with increased MyD88 expression and phosphorylation of TAK1 and IκB-α in cytosolic fractions of the tissues. LPS also caused an increase in both unphosphorylated and phosphorylated NF-κB p65 proteins in the cytosolic and nuclear fractions as well as nuclear translocation of NF-κB p65. In addition, serum miR-150, miR-223, and miR-297 expression levels were increased in LPS-treated rats. These effects of LPS were prevented by 5,14-HEDGE. CONCLUSIONS: These results suggest that downregulation of MyD88/TAK1/IKKß/IκB-α/NF-κB pathway as well as decreased circulating miR-150, miR-223, and miR-297 expression levels participate in the protective effect of 5,14-HEDGE against hypotension, tachycardia, and inflammation in the rat model of septic shock.


Assuntos
Lipopeptídeos/farmacologia , Substâncias Protetoras/farmacologia , Choque Séptico/metabolismo , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lipopeptídeos/uso terapêutico , Lipopolissacarídeos , MAP Quinase Quinase Quinases/metabolismo , Masculino , Artéria Mesentérica Superior/efeitos dos fármacos , Artéria Mesentérica Superior/metabolismo , MicroRNAs/sangue , Fator 88 de Diferenciação Mieloide/metabolismo , Miocárdio/metabolismo , Substâncias Protetoras/uso terapêutico , Ratos Wistar , Choque Séptico/sangue , Choque Séptico/tratamento farmacológico , Choque Séptico/fisiopatologia , Fator de Transcrição RelA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...