Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 238(Pt 2): 117131, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37709242

RESUMO

Hydroxyapatite (HAp) is the most well-known bioceramic and widely utilized in bone tissue regeneration. Hydroxyapatite is biocompatible and bioactive however, it lacks osteogenesis, angiogenesis, and antibacterial properties. In the current study, we synthesized and evaluated a novel nickel (Ni) and silver (Ag) codoped hydroxyapatite (HAp) in comparison to undoped HAp and individually doped HAp samples. Extensive physicochemical characterizations like XRD, TEM, FE-SEM/EDS, FTIR, Raman spectroscopy, and TGA were performed, confirming the crystal structure and morphology of the synthesized HAp samples. All HAp samples exhibited elongated spherical-like nanoparticle morphologies with lengths between 34 and 44 nm and widths between 21 and 26 nm. The presence of dopant atoms, Ag and Ni, were observed in the doped/codoped HAp samples by EDS elemental mapping. Biocompatibility assessments using pre-osteoblast cells indicated high cell viability for all the doped and undoped HAp samples. Osteoinduction potential through alkaline phosphatase (ALP) activity measurements and alizarin red S (ARS) staining revealed enhanced calcium deposition in the presence of Ni-Ag codoped HAp compared to other HAp samples and control groups. This highlights the importance of Ni-Ag co-doping in promoting osteogenesis, surpassing the effects of silver doped HAp and nickel doped HAp. The potential of this novel Ni-Ag codoped HAp to induce osteogenesis in pre-osteoblast cells makes it a promising material for various applications in bone tissue engineering.


Assuntos
Durapatita , Prata , Durapatita/química , Prata/química , Níquel , Engenharia Tecidual , Osso e Ossos
2.
Int J Biol Macromol ; 250: 126237, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567538

RESUMO

Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.

3.
Lab Chip ; 23(11): 2640-2653, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37183761

RESUMO

Hydrodynamic cavitation (HC) is a phase change phenomenon, where energy release in a fluid occurs upon the collapse of bubbles, which form due to the low local pressures. During recent years, due to advances in lab-on-a-chip technologies, HC-on-a-chip (HCOC) and its potential applications have attracted considerable interest. Microfluidic devices enable the performance of controlled experiments by enabling spatial control over the cavitation process and by precisely monitoring its evolution. In this study, we propose the adjunctive use of HC to induce distinct zones of cellular injury and enhance the anticancer efficacy of Doxorubicin (DOX). HC caused different regions (lysis, necrosis, permeabilization, and unaffected regions) upon exposure of different cancer and normal cells to HC. Moreover, HC was also applied to the confluent cell monolayer following the DOX treatment. Here, it was shown that the combination of DOX and HC exhibited a more pronounced anticancer activity on cancer cells than DOX alone. The effect of HC on cell permeabilization was also proven by using carbon dots (CDs). Finally, the cell stiffness parameter, which was associated with cell proliferation, migration and metastasis, was investigated with the use of cancer cells and normal cells under HC exposure. The HCOC offers the advantage of creating well-defined zones of bio-responses upon HC exposure simultaneously within minutes, achieving cell lysis and molecular delivery through permeabilization by providing spatial control. In conclusion, micro scale hydrodynamic cavitation proposes a promising alternative to be used to increase the therapeutic efficacy of anticancer drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Hidrodinâmica , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Antineoplásicos/farmacologia
4.
Carbohydr Polym ; 283: 119142, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35153015

RESUMO

Bone repair is a self-healing process. However, critical-sized bone defects need bone augmentation where bone tissue engineering plays vital role. Bone tissue Engineering (BTE) requires unique combinations of scaffolds, cells, and bio-signal molecules. Bone scaffold materials should be biocompatible, bioresorbable and exhibit biomimetic properties. Natural polymers, acquiring cell binding motives, producing nontoxic degradation products and tunable properties are ideal materials. Anionic polysaccharides of natural origin mimic mammalian ECM components and even the group called GAGs (Glycosaminoglycan) are actual components of ECM possessing various functions including cell adhesion, cell signaling, maintenance of homeostasis and inflammation control. Among them, anionic polysaccharides provide stabilization and sustained release of growth factors (GFs), porosity, calcium phosphate nucleation site, viscoelasticity, and water retention. Therefore, anionic polysaccharides are unique biomaterials for BTE. In this review, we have summarized the highlights of bone tissue engineering and recent applications of anionic polysaccharides in BTE.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/metabolismo , Polissacarídeos/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Ânions/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biomiméticos/farmacologia , Adesão Celular/efeitos dos fármacos , Glicosaminoglicanos/química , Humanos , Masculino , Osteogênese/efeitos dos fármacos , Polímeros/química , Polissacarídeos/química , Porosidade , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...