Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(1): eadg5461, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170764

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease. We found that while infected wild-type mice lost ~10% weight by 3 to 4 days postinfection, rag-/- mice lacking B and T lymphocytes did not lose weight. Infected lungs at peak weight loss revealed lower pathology scores, fewer neutrophils, and lower interleukin-6 and tumor necrosis factor-α in rag-/- mice. Mice lacking αß T cells also had less severe weight loss, but adoptive transfer of T and B cells into rag-/- mice did not significantly change the response. Collectively, these findings suggest that while adaptive immune cells are important for clearing SARS-CoV-2 infection, this comes at the expense of increased inflammation and pathology.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Camundongos , Animais , Linfócitos T , Inflamação , Redução de Peso , Modelos Animais de Doenças
2.
Adv Healthc Mater ; 12(19): e2202918, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37002787

RESUMO

Herein, this work reports the first synthetic vaccine adjuvants that attenuate potency in response to small, 1-2 °C changes in temperature about their lower critical solution temperature (LCST). Adjuvant additives significantly increase vaccine efficacy. However, adjuvants also cause inflammatory side effects, such as pyrexia, which currently limits their use. To address this, a thermophobic vaccine adjuvant engineered to attenuate potency at temperatures correlating to pyrexia is created. Thermophobic adjuvants are synthesized by combining a rationally designed trehalose glycolipid vaccine adjuvant with thermoresponsive poly-N-isoporpylacrylamide (NIPAM) via reversible addition fragmentation chain transfer (RAFT) polymerization. The resulting thermophobic adjuvants exhibit LCSTs near 37 °C, and self-assembled into nanoparticles with temperature-dependent sizes (90-270 nm). Thermophobic adjuvants activate HEK-mMINCLE and other innate immune cell lines as well as primary mouse bone marrow derived dendritic cells (BMDCs) and bone marrow derived macrophages (BMDMs). Inflammatory cytokine production is attenuated under conditions mimicking pyrexia (above the LCST) relative to homeostasis (37 °C) or below the LCST. This thermophobic behavior correlated with decreased adjuvant Rg is observed by DLS, as well as glycolipid-NIPAM shielding interactions are observed by NOESY-NMR. In vivo, thermophobic adjuvants enhance efficacy of a whole inactivated influenza A/California/04/2009 virus vaccine, by increasing neutralizing antibody titers and CD4+ /44+ /62L+ lung and lymph node central memory T cells, as well as providing better protection from morbidity after viral challenge relative to unadjuvanted control vaccine. Together, these results demonstrate the first adjuvants with potency regulated by temperature. This work envisions that with further investigation, this approach can enhance vaccine efficacy while maintaining safety.


Assuntos
Adjuvantes de Vacinas , Vacinas , Animais , Camundongos , Trealose/farmacologia , Trealose/química , Lectinas Tipo C/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Glicolipídeos/farmacologia , Glicolipídeos/química , Anticorpos Antivirais
3.
J Immunol ; 193(12): 6031-40, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25392529

RESUMO

Influenza viruses remain a critical global health concern. More efficacious vaccines are needed to protect against influenza virus, yet few adjuvants are approved for routine use. Specialized proresolving mediators (SPMs) are powerful endogenous bioactive regulators of inflammation, with great clinical translational properties. In this study, we investigated the ability of the SPM 17-HDHA to enhance the adaptive immune response using an OVA immunization model and a preclinical influenza vaccination mouse model. Our findings revealed that mice immunized with OVA plus 17-HDHA or with H1N1-derived HA protein plus 17-HDHA increased Ag-specific Ab titers. 17-HDHA increased the number of Ab-secreting cells in vitro and the number of HA-specific Ab-secreting cells present in the bone marrow. Importantly, the 17-HDHA-mediated increased Ab production was more protective against live pH1N1 influenza infection in mice. To our knowledge, this is the first report on the biological effects of ω-3-derived SPMs on the humoral immune response. These findings illustrate a previously unknown biological link between proresolution signals and the adaptive immune system. Furthermore, this work has important implications for the understanding of B cell biology, as well as the development of new potential vaccine adjuvants.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Imunidade Humoral/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/imunologia , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Camundongos , Infecções por Orthomyxoviridae/virologia , Plasmócitos/citologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Plasmócitos/metabolismo
4.
J Immunol ; 189(10): 4740-7, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23041568

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPARγ, a ligand-activated transcription factor, has important anti-inflammatory and antiproliferative functions, and it has been associated with diseases including diabetes, scarring, and atherosclerosis, among others. PPARγ is expressed in most bone marrow-derived cells and influences their function. PPARγ ligands can stimulate human B cell differentiation and promote Ab production. A knowledge gap is that the role of PPARγ in B cells under physiological conditions is not known. We developed a new B cell-specific PPARγ (B-PPARγ) knockout mouse and explored the role of PPARγ during both the primary and secondary immune response. In this article, we show that PPARγ deficiency in B cells decreases germinal center B cells and plasma cell development, as well as the levels of circulating Ag-specific Abs during a primary challenge. Inability to generate germinal center B cells and plasma cells is correlated to decreased MHC class II expression and decreased Bcl-6 and Blimp-1 levels. Furthermore, B-PPARγ-deficient mice have an impaired memory response, characterized by low titers of Ag-specific Abs and low numbers of Ag-experienced, Ab-secreting cells. However, B-PPARγ-deficient mice have no differences in B cell population distribution within primary or secondary lymphoid organs during development. This is the first report, to our knowledge, to show that, under physiological conditions, PPARγ expression in B cells is required for an efficient B cell-mediated immune response as it regulates B cell differentiation and Ab production.


Assuntos
Anticorpos/imunologia , Formação de Anticorpos/fisiologia , Especificidade de Anticorpos/fisiologia , Diferenciação Celular/imunologia , PPAR gama/imunologia , Plasmócitos/imunologia , Animais , Anticorpos/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Humanos , Camundongos , Camundongos Knockout , Especificidade de Órgãos , PPAR gama/genética , Plasmócitos/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Proto-Oncogênicas c-bcl-6 , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...