Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3122, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813840

RESUMO

African mole-rats are subterranean rodents inhabiting underground burrows. This habitat entails risks of overheating, hypoxia, and scarce food availability. Consequently, many subterranean species have evolved low basal metabolism and low body temperature, but the regulation of these traits at the molecular level were unknown. Measurements of serum thyroid hormone (TH) concentrations in African mole-rats have revealed a unique TH phenotype, which deviates from the typical mammalian pattern. Since THs are major regulators of metabolic rate and body temperature, we further characterised the TH system of two African mole-rat species, the naked mole-rat (Heterocephalus glaber) and the Ansell's mole-rat (Fukomys anselli) at the molecular level in a comparative approach involving the house mouse (Mus musculus) as a well-studied laboratory model in TH research. Most intriguingly, both mole-rat species had low iodide levels in the thyroid and naked mole-rats showed signs of thyroid gland hyperplasia. However, contrary to expectations, we found several species-specific differences in the TH systems of both mole-rat species, although ultimately resulting in similar serum TH concentrations. These findings indicate a possible convergent adaptation. Thus, our study adds to our knowledge for understanding adaptations to the subterranean habitat.


Assuntos
Ratos-Toupeira , Hormônios Tireóideos , Animais , Camundongos , Ratos-Toupeira/fisiologia , Ecossistema , Aclimatação
2.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571938

RESUMO

Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein-protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns-but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues' main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Percas/metabolismo , Mapas de Interação de Proteínas , Seleção Genética , Transcriptoma , Animais , Genoma , Anotação de Sequência Molecular , Especificidade de Órgãos , Percas/genética
3.
Mol Biol Evol ; 38(11): 4700-4714, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34175932

RESUMO

Although the investigation of the epigenome becomes increasingly important, still little is known about the long-term evolution of epigenetic marks and systematic investigation strategies are still lacking. Here, we systematically demonstrate the transfer of classic phylogenetic methods such as maximum likelihood based on substitution models, parsimony, and distance-based to interval-scaled epigenetic data. Using a great apes blood data set, we demonstrate that DNA methylation is evolutionarily conserved at the level of individual CpGs in promotors, enhancers, and genic regions. Our analysis also reveals that this epigenomic conservation is significantly correlated with its transcription factor binding density. Binding sites for transcription factors involved in neuron differentiation and components of AP-1 evolve at a significantly higher rate at methylation than at the nucleotide level. Moreover, our models suggest an accelerated epigenomic evolution at binding sites of BRCA1, chromobox homolog protein 2, and factors of the polycomb repressor 2 complex in humans. For most genomic regions, the methylation-based reconstruction of phylogenetic trees is at par with sequence-based reconstruction. Most strikingly, phylogenetic reconstruction using methylation rates in enhancer regions was ineffective independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites enriched in enhancers controlling immune-related genes.


Assuntos
Epigenoma , Epigenômica , Animais , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Funções Verossimilhança , Filogenia , Primatas/genética
4.
Front Mol Biosci ; 8: 660959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079817

RESUMO

Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.

5.
Sci Rep ; 11(1): 7951, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846452

RESUMO

Large amounts of ultra-high molecular weight hyaluronan (HA) have been described as the main cause of cancer resistance in naked mole-rats (Heterocephalus glaber, NMR). Our work examined HA metabolism in these rodents more closely. HA was localized and quantified using HA binding proteins. Its molecular weight was determined using size exclusion chromatography and gel electrophoresis, HA family gene expression using RNAseq analysis, and hyaluronidase activity using zymography. Guinea pigs (Cavia porcellus) and mice (Mus musculus) were used as controls for some experiments. We found that HA localization was similar in NMR, guinea pig, and mouse tissues but NMR had larger amounts and higher molecular weight (maximum, around 2.5 MDa) of HA in serum and almost all tissues tested. We could not find ultra-high molecular weight HA (≥ 4 MDa) in NMR samples, in contrast to previous descriptions. Hyaluronidase-1 had lower expression and activity in NMR than mouse lymph nodes. RNAseq results showed that, among HA family genes, Tnfaip6 and hyaluronidase-3 (Hyal3) were systematically overexpressed in NMR tissues. In conclusion, NMR samples, contrary to expectations, do not harbor ultra-high molecular weight HA, although its amount and average molecular weight are higher in NMR than in guinea pig tissues and serum. Although hyaluronidase expression and activity are lower in NMR than mouse lymph nodes, this not sufficient to explain the presence of high molecular weight HA. A different activity of the NMR HA synthases remains possible. These characteristics, together with extremely high Hyal3 and Tnfaip6 expression, may provide the NMR with a bespoke, and perhaps protective, HA metabolism.


Assuntos
Ácido Hialurônico/sangue , Ratos-Toupeira/sangue , Especificidade de Órgãos , Animais , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Receptores de Hialuronatos/metabolismo , Hialuronoglucosaminidase/metabolismo , Linfonodos/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Peso Molecular
6.
Elife ; 102021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724179

RESUMO

Sexual activity and/or reproduction are associated with a doubling of life expectancy in the long-lived rodent genus Fukomys. To investigate the molecular mechanisms underlying this phenomenon, we analyzed 636 RNA-seq samples across 15 tissues. This analysis suggests that changes in the regulation of the hypothalamic-pituitary-adrenal stress axis play a key role regarding the extended life expectancy of reproductive vs. non-reproductive mole-rats. This is substantiated by a corpus of independent evidence. In accordance with previous studies, the up-regulation of the proteasome and so-called 'anti-aging molecules', for example, dehydroepiandrosterone, is linked with enhanced lifespan. On the other hand, several of our results are not consistent with knowledge about aging of short-lived model organisms. For example, we found the up-regulation of the insulin-like growth factor 1/growth hormone axis and several other anabolic processes to be compatible with a considerable lifespan prolongation. These contradictions question the extent to which findings from short-lived species can be transferred to longer-lived ones.


Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Longevidade/genética , Sistema Hipófise-Suprarrenal/metabolismo , Reprodução , Animais , Desidroepiandrosterona/farmacologia , Feminino , Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Comportamento Sexual Animal , Estresse Psicológico/metabolismo
7.
Biol Rev Camb Philos Soc ; 96(2): 376-393, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128331

RESUMO

Naked mole-rats express many unusual traits for such a small rodent. Their morphology, social behaviour, physiology, and ageing have been well studied over the past half-century. Many early findings and speculations about this subterranean species persist in the literature, although some have been repeatedly questioned or refuted. While the popularity of this species as a natural-history curiosity, and oversimplified story-telling in science journalism, might have fuelled the perpetuation of such misconceptions, an accurate understanding of their biology is especially important for this new biomedical model organism. We review 28 of these persistent myths about naked mole-rat sensory abilities, ecophysiology, social behaviour, development and ageing, and where possible we explain how these misunderstandings came about.


Assuntos
Ratos-Toupeira , Comportamento Social , Envelhecimento , Animais , Biologia
8.
Elife ; 92020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263276

RESUMO

The transcription factor p53 is the best-known tumor suppressor, but its sibling p63 is a master regulator of epidermis development and a key oncogenic driver in squamous cell carcinomas (SCC). Despite multiple gene expression studies becoming available, the limited overlap of reported p63-dependent genes has made it difficult to decipher the p63 gene regulatory network. Particularly, analyses of p63 response elements differed substantially among the studies. To address this intricate data situation, we provide an integrated resource that enables assessing the p63-dependent regulation of any human gene of interest. We use a novel iterative de novo motif search approach in conjunction with extensive ChIP-seq data to achieve a precise global distinction between p53-and p63-binding sites, recognition motifs, and potential co-factors. We integrate these data with enhancer:gene associations to predict p63 target genes and identify those that are commonly de-regulated in SCC representing candidates for prognosis and therapeutic interventions.


Assuntos
Biomarcadores Tumorais/genética , DNA/metabolismo , Redes Reguladoras de Genes , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Sítios de Ligação , Biomarcadores Tumorais/metabolismo , Biologia Computacional , DNA/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Prognóstico , Ligação Proteica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/mortalidade , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo
9.
BMC Bioinformatics ; 21(1): 490, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129266

RESUMO

BACKGROUND: Post-translational modifications (PTM) of amino acid (AA) side chains in peptides control protein structure and functionality. PTMs depend on the specific AA characteristics. The reactivity of cysteine thiol-based PTMs are unique among all proteinaceous AA. This pipeline aims to ease the identification of conserved AA of polypeptides or protein families based on the phylogenetic occurrence in the plant kingdom. The tool is customizable to include any species. The degree of AA conservation is taken as indicator for structural and functional significance, especially for PTM-based regulation. Further, this pipeline tool gives insight into the evolution of these potentially regulatory important peptides. RESULTS: The web-based or stand-alone pipeline tool Conserved Cysteine Finder (ConCysFind) was developed to identify conserved AA such as cysteine, tryptophan, serine, threonine, tyrosin and methionine. ConCysFind evaluates multiple alignments considering the proteome of 21 plant species. This exemplar study focused on Cys as evolutionarily conserved target for multiple redox PTM. Phylogenetic trees and tables with the compressed results of the scoring algorithm are generated for each Cys in the query polypeptide. Analysis of 33 translation elongation and release factors alongside of known redox proteins from Arabidopsis thaliana for conserved Cys residues confirmed the suitability of the tool for identifying conserved and functional PTM sites. Exemplarily, the redox sensitivity of cysteines in the eukaryotic release factor 1-1 (eRF1-1) was experimentally validated. CONCLUSION: ConCysFind is a valuable tool for prediction of new potential protein PTM targets in a broad spectrum of species, based on conserved AA throughout the plant kingdom. The identified targets were successfully verified through protein biochemical assays. The pipeline is universally applicable to other phylogenetic branches by customization of the database.


Assuntos
Algoritmos , Aminoácidos/química , Sequência Conservada , Proteínas de Plantas/química , Plantas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Oxirredução , Filogenia , Processamento de Proteína Pós-Traducional
10.
BMC Evol Biol ; 19(1): 89, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975078

RESUMO

BACKGROUND: Standard evolutionary theories of aging postulate that reduced extrinsic mortality leads to evolution of longevity. Clownfishes of the genus Amphiprion live in a symbiotic relationship with sea anemones that provide protection from predators. We performed a survey and identified at least two species with a lifespan of over 20 years. Given their small size and ease of captive reproduction, clownfish lend themselves as experimental models of exceptional longevity. To identify genetic correlates of exceptional longevity, we sequenced the transcriptomes of Amphiprion percula and A. clarkii and performed a scan for positively-selected genes (PSGs). RESULTS: The PSGs that we identified in the last common clownfish ancestor were compared with PSGs detected in long-lived mole rats and short-lived killifishes revealing convergent evolution in processes such as mitochondrial biogenesis. Among individual genes, the Mitochondrial Transcription Termination Factor 1 (MTERF1), was positively-selected in all three clades, whereas the Glutathione S-Transferase Kappa 1 (GSTK1) was under positive selection in two independent clades. For the latter, homology modelling strongly suggested that positive selection targeted enzymatically important residues. CONCLUSIONS: These results indicate that specific pathways were recruited in independent lineages evolving an exceptionally extended or shortened lifespan and point to mito-nuclear balance as a key factor.


Assuntos
Evolução Biológica , Longevidade/genética , Fases de Leitura Aberta/genética , Perciformes/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Éxons/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Ontologia Genética , Biogênese de Organelas , Filogenia
11.
Aging (Albany NY) ; 10(12): 3938-3956, 2018 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-30557854

RESUMO

Many aging-associated physiological changes are known to occur in short- and long-lived species with different trajectories. Emerging evidence suggests that numerous life history trait differences between species are based on interspecies variations in gene expression. Little information is available, however, about differences in transcriptome changes during aging between mammals with diverging lifespans. For this reason, we studied the transcriptomes of five tissue types and two age cohorts of two similarly sized rodent species with very different lifespans: laboratory rats (Rattus norvegicus) and giant mole-rats (Fukomys mechowii), with maximum lifespans of 3.8 and more than 20 years, respectively. Our findings show that giant mole-rats exhibit higher gene expression stability during aging than rats. Although well-known aging signatures were detected in all tissue types of rats, they were found in only one tissue type of giant mole-rats. Furthermore, many differentially expressed genes that were found in both species were regulated in opposite directions during aging. This suggests that expression changes which cause aging in short-lived species are counteracted in long-lived species. Taken together, we conclude that expression stability in giant mole rats (and potentially in African mole-rats in general) may be one key factor for their long and healthy life.


Assuntos
Envelhecimento/fisiologia , Regulação da Expressão Gênica/fisiologia , Ratos-Toupeira/fisiologia , Animais , Ratos
12.
PLoS One ; 13(11): e0207304, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30419061

RESUMO

Phylogenomics and genome scale positive selection analyses were performed on 29 Corynebacterium pseudotuberculosis genomes that were isolated from different hosts, including representatives of the Ovis and Equi biovars. A total of 27 genes were identified as undergoing adaptive changes. An analysis of the clades within this species and these biovars, the genes specific to each branch, and the genes responding to selective pressure show clear differences, indicating that adaptation and specialization is occurring in different clades. These changes are often correlated with the isolation host but could indicate responses to some undetermined factor in the respective niches. The fact that some of these more-rapidly evolving genes have homology to known virulence factors, antimicrobial resistance genes and drug targets shows that this type of analysis could be used to identify novel targets, and that these could be used as a way to control this pathogen.


Assuntos
Adaptação Fisiológica , Corynebacterium pseudotuberculosis , Farmacorresistência Bacteriana , Evolução Molecular , Fatores de Virulência , Corynebacterium pseudotuberculosis/genética , Corynebacterium pseudotuberculosis/metabolismo , Corynebacterium pseudotuberculosis/patogenicidade , Deleção de Genes , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
13.
BMC Biol ; 16(1): 82, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30068331

RESUMO

BACKGROUND: Mammals display a wide range of variation in their lifespan. Investigating the molecular networks that distinguish long- from short-lived species has proven useful to identify determinants of longevity. Here, we compared the livers of young and old long-lived naked mole-rats (NMRs) and the phylogenetically closely related, shorter-lived, guinea pigs using an integrated omics approach. RESULTS: We found that NMR livers display a unique expression pattern of mitochondrial proteins that results in distinct metabolic features of their mitochondria. For instance, we observed a generally reduced respiration rate associated with lower protein levels of respiratory chain components, particularly complex I, and increased capacity to utilize fatty acids. Interestingly, we show that the same molecular networks are affected during aging in both NMRs and humans, supporting a direct link to the extraordinary longevity of both species. Finally, we identified a novel detoxification pathway linked to longevity and validated it experimentally in the nematode Caenorhabditis elegans. CONCLUSIONS: Our work demonstrates the benefits of integrating proteomic and transcriptomic data to perform cross-species comparisons of longevity-associated networks. Using a multispecies approach, we show at the molecular level that livers of NMRs display progressive age-dependent changes that recapitulate typical signatures of aging despite the negligible senescence and extraordinary longevity of these rodents.


Assuntos
Envelhecimento , Fígado/metabolismo , Longevidade , Ratos-Toupeira/fisiologia , Proteoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Caenorhabditis elegans/fisiologia , Cobaias , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade da Espécie
14.
BMC Biol ; 16(1): 77, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30068345

RESUMO

BACKGROUND: Naked mole-rats (NMRs) are eusocially organized in colonies. Although breeders carry the additional metabolic load of reproduction, they are extremely long-lived and remain fertile throughout their lifespan. This phenomenon contrasts the disposable soma theory of aging stating that organisms can invest their resources either in somatic maintenance, enabling a longer lifespan, or in reproduction, at the cost of longevity. Here, we present a comparative transcriptome analysis of breeders vs. non-breeders of the eusocial, long-lived NMR vs. the polygynous and shorter-lived guinea pig (GP). RESULTS: Comparative transcriptome analysis of tissue samples from ten organs showed, in contrast to GPs, low levels of differentiation between sexes in adult NMR non-breeders. After transition into breeders, NMR transcriptomes are markedly sex-specific, show pronounced feedback signaling via gonadal steroids, and have similarities to reproductive phenotypes in African cichlid fish, which also exhibit social status changes between dominant and subordinate phenotypes. Further, NMRs show functional enrichment of status-related expression differences associated with aging. Lipid metabolism and oxidative phosphorylation-molecular networks known to be linked to aging-were identified among most affected gene sets. Remarkably and in contrast to GPs, transcriptome patterns associated with longevity are reinforced in NMR breeders. CONCLUSION: Our results provide comprehensive and unbiased molecular insights into interspecies differences between NMRs and GPs, both in sexual maturation and in the impact of reproduction on longevity. We present molecular evidence that sexual maturation in NMRs is socially suppressed. In agreement with evolutionary theories of aging in eusocial organisms, we have identified transcriptome patterns in NMR breeders that-in contrast to the disposable soma theory of aging-may slow down aging rates and potentially contribute to their exceptional long life- and healthspan.


Assuntos
Envelhecimento/genética , Ratos-Toupeira/genética , Reprodução/genética , Maturidade Sexual/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Cobaias , Análise de Sequência de RNA/métodos
15.
PLoS Genet ; 14(3): e1007272, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570707

RESUMO

The genetics of lifespan determination is poorly understood. Most research has been done on short-lived animals and it is unclear if these insights can be transferred to long-lived mammals like humans. Some African mole-rats (Bathyergidae) have life expectancies that are multiple times higher than similar sized and phylogenetically closely related rodents. To gain new insights into genetic mechanisms determining mammalian lifespans, we obtained genomic and transcriptomic data from 17 rodent species and scanned eleven evolutionary branches associated with the evolution of enhanced longevity for positively selected genes (PSGs). Indicating relevance for aging, the set of 250 identified PSGs showed in liver of long-lived naked mole-rats and short-lived rats an expression pattern that fits the antagonistic pleiotropy theory of aging. Moreover, we found the PSGs to be enriched for genes known to be related to aging. Among these enrichments were "cellular respiration" and "metal ion homeostasis", as well as functional terms associated with processes regulated by the mTOR pathway: translation, autophagy and inflammation. Remarkably, among PSGs are RHEB, a regulator of mTOR, and IGF1, both central components of aging-relevant pathways, as well as genes yet unknown to be aging-associated but representing convincing functional candidates, e.g. RHEBL1, AMHR2, PSMG1 and AGER. Exemplary protein homology modeling suggests functional consequences for amino acid changes under positive selection. Therefore, we conclude that our results provide a meaningful resource for follow-up studies to mechanistically link identified genes and amino acids under positive selection to aging and lifespan determination.


Assuntos
Longevidade/genética , Roedores/genética , Seleção Genética , Animais , Genoma , Homeostase , Transporte de Íons , Estresse Oxidativo , Especificidade da Espécie , Transcriptoma
16.
Aging (Albany NY) ; 9(10): 2018-2019, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074821
17.
Physiol Genomics ; 49(11): 690-702, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916632

RESUMO

Tissue-, sex-, and age-specific epigenetic modifications such as DNA methylation are largely unknown. Changes in DNA methylation of the glucocorticoid receptor gene (NR3C1) and imprinting control region (ICR) of IGF2 and H19 genes during the lifespan are particularly interesting since these genes are susceptible to epigenetic modifications by prenatal stress or malnutrition. They are important regulators of development and aging. Methylation changes of NR3C1 affect glucocorticoid receptor expression, which is associated with stress sensitivity and stress-related diseases predominantly occurring during aging. Methylation changes of IGF2/H19 affect growth trajectory and nutrient use with risk of metabolic syndrome. Using a locus-specific approach, we characterized DNA methylation patterns of different Nr3c1 promoters and Igf2/H19 ICR in seven tissues of rats at 3, 9, and 24 mo of age. We found a complex pattern of locus-, tissue-, sex-, and age-specific DNA methylation. Tissue-specific methylation was most prominent at the shores of the Nr3c1 CpG island (CGI). Sex-specific differences in methylation peaked at 9 mo. During aging, Nr3c1 predominantly displayed hypomethylation mainly in females and at shores, whereas hypermethylation occurred within the CGI. Igf2/H19 ICR exhibited age-related hypomethylation occurring mainly in males. Methylation patterns of Nr3c1 in the skin correlated with those in the cortex, hippocampus, and hypothalamus. Skin may serve as proxy for methylation changes in central parts of the hypothalamic-pituitary-adrenal axis and hence for vulnerability to stress- and age-associated diseases. Thus, we provide in-depth insight into the complex DNA methylation changes of rat Nr3c1 and Igf2/H19 during aging that are tissue and sex specific.


Assuntos
Envelhecimento/genética , Metilação de DNA/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/genética , Caracteres Sexuais , Animais , Ilhas de CpG/genética , Éxons/genética , Feminino , Loci Gênicos , Masculino , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Análise de Sequência de DNA
18.
Aging Cell ; 16(3): 488-496, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28295945

RESUMO

The current molecular understanding of the aging process derives almost exclusively from the study of random or targeted single-gene mutations in highly inbred laboratory species, mostly invertebrates. Little information is available as to the genetic mechanisms responsible for natural lifespan variation and the evolution of lifespan, especially in vertebrates. Here, we investigated the pattern of positive selection in annual (i.e., short-lived) and nonannual (i.e., longer-lived) African killifishes to identify a genomic substrate for evolution of annual life history (and reduced lifespan). We identified genes under positive selection in all steps of mitochondrial biogenesis: mitochondrial (mt) DNA replication, transcription from mt promoters, processing and stabilization of mt RNAs, mt translation, assembly of respiratory chain complexes, and electron transport chain. Signs of paralleled evolution (i.e., evolution in more than one branch of Nothobranchius phylogeny) are observed in four out of five steps. Moreover, some genes under positive selection in Nothobranchius are under positive selection also in long-lived mammals such as bats and mole-rats. Complexes of the respiratory chain are formed in a coordinates multistep process where nuclearly and mitochondrially encoded components are assembled and inserted into the inner mitochondrial membrane. The coordination of this process is named mitonuclear balance, and experimental manipulations of mitonuclear balance can increase longevity of laboratory species. Our data strongly indicate that these genes are also casually linked to evolution lifespan in vertebrates.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Proteínas de Peixes/genética , Genoma , Peixes Listrados/genética , Longevidade/genética , Mitocôndrias/genética , Animais , Evolução Biológica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quirópteros/genética , Replicação do DNA , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Mitocondriais , Peixes Listrados/classificação , Masculino , Mitocôndrias/metabolismo , Ratos-Toupeira/genética , Anotação de Sequência Molecular , Filogenia , Seleção Genética
19.
Nucleic Acids Res ; 45(11): e100, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28334822

RESUMO

Many comparative genomics studies aim to find the genetic basis of species-specific phenotypic traits. A prevailing strategy is to search genome-wide for genes that evolved under positive selection based on the non-synonymous to synonymous substitution ratio. However, incongruent results largely due to high false positive rates indicate the need for standardization of quality criteria and software tools. Main challenges are the ortholog and isoform assignment, the high sensitivity of the statistical models to alignment errors and the imperative to parallelize large parts of the software. We developed the software tool PosiGene that (i) detects positively selected genes (PSGs) on genome-scale, (ii) allows analysis of specific evolutionary branches, (iii) can be used in arbitrary species contexts and (iv) offers visualization of the results for further manual validation and biological interpretation. We exemplify PosiGene's performance using simulated and real data. In the simulated data approach, we determined a false positive rate <1%. With real data, we found that 68.4% of the PSGs detected by PosiGene, were shared by at least one previous study that used the same set of species. PosiGene is a user-friendly, reliable tool for reproducible genome-wide identification of PSGs and freely available at https://github.com/gengit/PosiGene.


Assuntos
Seleção Genética , Análise de Sequência de DNA , Software , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Evolução Molecular , Genoma , Humanos , Filogenia
20.
Trends Genet ; 32(9): 523-525, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27423541

RESUMO

Applications of positive selection analysis increase with the number of species for which genome/transcriptome sequences become available. Using the recently sequenced turquoise killifish (Nothobranchius furzeri) genome as an example, we compare two different approaches based on different outgroup selection. The combination of these two methods allows the origin of positively selected sites in aging-related genes of the N. furzeri genome to be determined.


Assuntos
Fundulidae/genética , Filogenia , Seleção Genética/genética , Transcriptoma/genética , Animais , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...