Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 290, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329563

RESUMO

BACKGROUND: The Deccan mahseer, Tor khudree (Sykes, 1839) is a potential game and food fish species belonging to the family cyprinidae and is categorized as endangered. Its distribution is restricted to southern part of India, specifically to Peninsular Rivers. This study is first to assess the genetic diversity and differentiation in Tor khudree by developing novel simple sequence repeat (SSR) markers. METHODS AND RESULTS: Low depth next generation sequencing followed by sequence analysis in MISA software identified 187,649 SSRs. The novel fourteen validated SSR loci were used for population genetic analysis. All of the SSR loci were highly informative with mean PIC > 0.5. High mean allelic richness (9.29) observed heterozygosity (0.98) and expected heterozygosity (0.79) were observed across the loci. However, genetic differentiation was low but significant (0.052). Negative FIS values were observed in both locus-wise and populations indicating the presence of high heterozygosity. Intrapopulation variation was found to be high (96.29%). The population structure revealed two genetic stocks. CONCLUSIONS: The results from the present study including the highly polymorphic markers developed would be a useful resource for further research on population genetics and conservation genetics of the species.


Assuntos
Cyprinidae , Animais , Cyprinidae/genética , Alelos , Alimentos , Repetições de Microssatélites/genética , Variação Genética/genética
2.
3 Biotech ; 14(2): 51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274848

RESUMO

To study genetic variation in Indian populations of tilapia, Oreochromis niloticus, both truss morphometrics and genetic characterization have been performed. In the present study, 88 individuals from two farm populations (GIFT and West Bengal) and one reservoir population (Gujarat) were selected to analyse variations at ten morphometric landmarks and eight microsatellite loci. Truss morphometric analysis showed PCI, PCII, and PCIII expressing 29.1%, 21.36%, and 15.48% of the variance, respectively. Results showed no clear shift in shape between the studied populations of O. niloticus, indicating low morphological variability among them. The number of microsatellite alleles ranged from 3 to 9, while expected heterozygosity (HE) and observed heterozygosity (HO) values ranged from 0.56 (WB) to 0.68 (Guj) and 0.59 (GIFT) to 0.72 (Guj), respectively. The Gujarat and West Bengal populations had the smallest pairwise distance (0.0123) between them, indicating that they were genetically closer. Individuals from GIFT, however, showed the largest distance from the other populations. DNA marker variations revealed the highest genetic variability in the Gujarat population and the lowest variability in the GIFT population. The results of this study will help establish a base population for genetic improvement program and conservation of wild populations.

3.
Biochem Genet ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231360

RESUMO

The Deccan mahseer, Tor khudree (Sykes 1839), belonging to family Cyprinidae is an important food and a game fish distributed in peninsular India. Due to overfishing and habitat destruction, the species is declared endangered and placed on the IUCN red list. Therefore, a well-designed conservation program may be essential to get this species protected in its natural habitat. We used a total of 152 samples from four rivers of peninsular India to assess the genetic diversity and structure of the mahseer using concatenated sequences of two mitochondrial genes, ATPase 6/8 (790 bp) and Cyt b (1000 bp). High haplotypic diversity was seen with 44 haplotypes. Individual gene wise haplotypes included 10 and 21 haplotypes for ATPase6/8 and Cyt b, respectively. AMOVA revealed most of the genetic variations (71.02%) to be within the populations. Significant genetic differentiation was observed between all population pairs, with FST values ranging from 0.121 to 0.372, with minimum between Tunga and Tungabhadra population and maximum between Tunga and Periyar population. Haplotype network showed one ancestral haplotype (TKACH04). Significant negative Fu's F and unimodal mismatch distribution suggested recent demographic expansion. The results of the present study would serve as a useful resource for further research on population genetics and conservation programs of the species.

4.
Chemosphere ; 337: 139128, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37315855

RESUMO

The present study has been carried out to see the long-term effects of triflumezopyrim in an Indian major carp, Labeo rohita. Fishes were exposed to sub-lethal concentrations triflumezopyrim insecticide, 1.41 ppm (Treatment 1), 3.27 ppm (Treatment 2) and 4.97 ppm (Treatment 3), respectively for 21 days. The liver, kidney, gills, muscle, and brain tissues of the fish were examined for physiological parameters and biochemical parameters such as catalase (CAT), superoxide dismutase (SOD), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST), acetylcholinessterase (AChE), and hexokinase. After 21 days of exposure, the activity CAT, SOD, LDH, MDH and ALT got increased and a drop in the activity of total protein was found in all treatment groups in comparison to the control group. Long-term triflumezopyrim exposure increased ROS production, ultimately leading to oxidative cell damage and inhibiting the antioxidant capabilities of the fish tissues. Histopathological analysis showed alteration in different tissues structures of pesticide treated fishes. Fishes exposed to highest sublethal concentration of the pesticide showed higher damage rate. The present study demonstrated that chronic exposure of fish to different sublethal concentration of triflumezopyrim exerts detrimental effect on the organism.


Assuntos
Cyprinidae , Inseticidas , Poluentes Químicos da Água , Animais , Inseticidas/farmacologia , Cyprinidae/metabolismo , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Água Doce , Fígado/metabolismo , Brânquias/metabolismo , Poluentes Químicos da Água/metabolismo
5.
Toxics ; 11(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37368643

RESUMO

Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals with an aliphatic fluorinated carbon chain. Due to their durability, bioaccumulation potential, and negative impacts on living organisms, these compounds have drawn lots of attention across the world. The negative impacts of PFASs on aquatic ecosystems are becoming a major concern due to their widespread use in increasing concentrations and constant leakage into the aquatic environment. Furthermore, by acting as agonists or antagonists, PFASs may alter the bioaccumulation and toxicity of certain substances. In many species, particularly aquatic organisms, PFASs can stay in the body and induce a variety of negative consequences, such as reproductive toxicity, oxidative stress, metabolic disruption, immunological toxicity, developmental toxicity, cellular damage and necrosis. PFAS bioaccumulation plays a significant role and has an impact on the composition of the intestinal microbiota, which is influenced by the kind of diet and is directly related to the host's well-being. PFASs also act as endocrine disruptor chemicals (EDCs) which can change the endocrine system and result in dysbiosis of gut microbes and other health repercussions. In silico investigation and analysis also shows that PFASs are incorporated into the maturing oocytes during vitellogenesis and are bound to vitellogenin and other yolk proteins. The present review reveals that aquatic species, especially fishes, are negatively affected by exposure to emerging PFASs. Additionally, the effects of PFAS pollution on aquatic ecosystems were investigated by evaluating a number of characteristics, including extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity of the microorganisms in the biofilms. Therefore, this review will provide crucial information on the possible adverse effects of PFASs on fish growth, reproduction, gut microbial dysbiosis, and its potential endocrine disruption. This information aims to help the researchers and academicians work and come up with possible remedial measures to protect aquatic ecosystems as future works need to be focus on techno-economic assessment, life cycle assessment, and multi criteria decision analysis systems that screen PFAS-containing samples. New innovative methods requires further development to reach detection at the permissible regulatory limits.

6.
Front Genet ; 14: 1166385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229204

RESUMO

Labeo catla (catla) is the second most commercially important and widely cultured Indian major carp (IMC). It is indigenous to the Indo-Gangetic riverine system of India and the rivers of Bangladesh, Nepal, Myanmar, and Pakistan. Despite the availability of substantial genomic resources in this important species, detailed information on the genome-scale population structure using SNP markers is yet to be reported. In the present study, the identification of genome-wide single nucleotide polymorphisms (SNPs) and population genomics of catla was undertaken by re-sequencing six catla populations of riverine origin from distinct geographical regions. DNA isolated from 100 samples was used to perform genotyping-by-sequencing (GBS). A published catla genome with 95% genome coverage was used as the reference for mapping reads using BWA software. From a total of 472 million paired-end (150 × 2 bp) raw reads generated in this study, we identified 10,485 high-quality polymorphic SNPs using the STACKS pipeline. Expected heterozygosity (He) across the populations ranged from 0.162 to 0.20, whereas observed heterozygosity (Ho) ranged between 0.053 and 0.06. The nucleotide diversity (π) was the lowest (0.168) in the Ganga population. The within-population variation was found to be higher (95.32%) than the among-population (4.68%) variation. However, genetic differentiation was observed to be low to moderate, with Fst values ranging from 0.020 to 0.084, and the highest between Brahmani and Krishna populations. Bayesian and multivariate techniques were used to further evaluate the population structure and supposed ancestry in the studied populations using the structure and discriminant analysis of principal components (DAPC), respectively. Both analyses revealed the existence of two separate genomic clusters. The maximum number of private alleles was observed in the Ganga population. The findings of this study will contribute to a deeper understanding of the population structure and genetic diversity of wild populations of catla for future research in fish population genomics.

7.
3 Biotech ; 12(11): 300, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36276442

RESUMO

Labeo fimbriatus is a medium carp species found throughout India's peninsular river basins and is regarded as a valuable aquaculture resource alongside Indian major carps due to its taste and nutritional value. This species has recently declined dramatically due to habitat degradation and overfishing. Because of its enormous economic importance, a selective breeding programme is likely to be in place to improve performance traits. Knowledge of genetic variation among the base population from which the broodstock will be selected is an important step in this process. A diverse genetic base of broodstock is required to achieve the best response to selection for long-term aquaculture management practices. Consequently, using mitochondrial DNA (ATPase 6 and Control region) and microsatellite markers, we have made the first step toward estimating the level of genetic variation and how it is distributed among the four populations of L. fimbriatus found in peninsular rivers in India. The ATPase 6 gene analysis in four populations revealed 15 haplotypes and 51 variable sites, in contrast to the Control region, which had 60 haplotypes together with 73 variable sites and a haplotype diversity of 0.941. Twelve microsatellite loci displayed estimated allele numbers (N A) ranging from 3 to 19, observed heterozygosity (H O), and expected heterozygosity (H E), respectively, of 0.705 to 0.753 and 0.657 to 0.914. Each marker type showed a significant F ST value, indicating the presence of low to moderate genetic differentiation across entire wild populations. The Godavari, Kaveri, and Mahanadi populations formed one cluster according to the UPGMA, which was based on genetic distance matrix, while the Krishna population formed a separate cluster. The comparative genetic analysis of data from different markers utilized in the current study would enable the identification of the genetic stocks of L. fimbriatus and facilitate conservation measures and selective breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03369-y.

8.
Front Physiol ; 13: 871045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035477

RESUMO

Climate vulnerability and induced changes in physico-chemical properties of aquatic environment can bring impairment in metabolism, physiology and reproduction in teleost. Variation in environmental stimuli mainly acts on reproduction by interfering with steroidogenesis, gametogenesis and embryogenesis. The control on reproductive function in captivity is essential for the sustainability of aquaculture production. There are more than 3,000 teleost species across the globe having commercial importance; however, adequate quality and quantity of seed production have been the biggest bottleneck. Probiotics are widely used in aquaculture as a growth promoter, stress tolerance, pathogen inhibition, nutrient digestibility and metabolism, reproductive performance and gamete quality. As the gut microbiota exerts various effects on the intestinal milieu which influences distant organs and pathways, therefore it is considered to be a full-fledged endocrine organ. Researches on Gut-Brain-Gonad axis (GBG axis) and its importance on physiology and reproduction have already been highlighted for higher mammals; however, the study on fish physiology and reproduction is limited. While looking into the paucity of information, we have attempted to review the present status of microbiome and its interaction between the brain and gut. This review will address a process of the microbiome physiological mechanism involved in fish reproduction. The gut microbiota influences the BPG axis through a wide variety of compounds, including neuropeptides, neurotransmitter homologs and transmitters. Currently, research is being conducted to determine the precise process by which gut microbial composition influences brain function in fish. The gut-brain bidirectional interaction can influence brain biochemistry such as GABA, serotonin and tryptophan metabolites which play significant roles in CNS regulation. This review summarizes the fact, how microbes from gut, skin and other parts of the body influence fish reproduction through the Gut-Brain-Gonad axis.

9.
Mar Genomics ; 64: 100967, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779450

RESUMO

Aquaculture is the fast-growing agricultural sector and has the ability to meet the growing demand for protein nutritional security for future population. In future aquaculture is going to be the major source of fish proteins as capture fisheries reached at its maximum. However, several challenges need to overcome such as lack of genetically improved strains/varieties, lack of species-specific feed/functional feed, round the year availability of quality fish seed, pollution of ecosystems and increased frequencies of disease occurrence etc. In recent years, the continuous development of high throughput sequencing technology has revolutionized the biological sciences and provided necessary tools. Application of 'omics' in aquaculture research have been successfully used to resolve several productive and reproductive issues and thus ensure its sustainability and profitability. To date, high quality draft genomes of over fifty fish species have been generated and successfully used to develop large number of single nucleotide polymorphism markers (SNPs), marker panels and other genomic resources etc in several aquaculture species. Similarly, transcriptome profiling and miRNAs analysis have been used in aquaculture research to identify key transcripts and expression analysis of candidate genes/miRNAs involved in reproduction, immunity, growth, development, stress toxicology and disease. Metagenome analysis emerged as a promising scientific tool to analyze the complex genomes contained within microbial communities. Metagenomics has been successfully used in the aquaculture sector to identify novel and potential pathogens, antibiotic resistance genes, microbial roles in microcosms, microbial communities forming biofloc, probiotics etc. In the current review, we discussed application of high-throughput technologies (NGS) in the aquaculture sector.


Assuntos
Análise de Dados , MicroRNAs , Animais , Aquicultura , Ecossistema , Peixes/genética , Genômica
10.
Mol Biol Rep ; 49(7): 6249-6259, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35399140

RESUMO

BACKGROUND: The small non-coding microRNAs play a vital role in post-transcriptional gene regulation associated with different physiological events such as metabolism, stress, etc. The freshwater catfish, Clarias magur, can grow within hyper ammonia containing stagnant water bodies and/or muddy substratum. We intended to identify organ-specific miRNAs associated with ammonia stress management. METHODS AND RESULTS: The miRNA-libraries were generated from QC passed total RNA extracted from liver, muscle, and kidney of ammonia-treated (exposed to 25 mM NH4Cl for 14 days) and untreated catfish. The libraries were validated using High sensitivity D1000 Screen tape. The trimmed quality-filtered reads for control and treated samples of kidney were 19,406,210; 14,904,423; for liver 15,467,727; 18,582,072; and for muscle 25,081,345; 19,782,182 respectively. Total 120 known and 150 novel differentially expressed miRNAs were identified, out of which miR-200, miR-217, miR-122, miR-133, miR-145, miR-221, miR-19, miR-138, miR-34, and miR-184 were predicted to be involved in the metabolism of nitrogen. The key miRNAs targeted several genes associated with urea synthesis like Glutaminase 2, Argininosuccinate lyase, Glutamate dehydrogenase 1, Alanine aminotransferase 2-like, Aspartate aminotransferase, cytoplasmic-like, Glutamate ionotropic receptor NMDA type subunit 2A, etc. CONCLUSIONS: This is the first report of miRNAs, which serve as a vital resource for regulating nitrogen metabolism in freshwater catfish, C. magur. The data will be resourceful for further evaluating the regulatory role of miRNAs in fishes, which grow and reproduce very well in hazardous ammonia-contaminated water bodies.


Assuntos
Peixes-Gato , MicroRNAs , Amônia/metabolismo , Amônia/toxicidade , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Nitrogênio/metabolismo , Água/metabolismo
11.
Fish Physiol Biochem ; 47(5): 1353-1367, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273063

RESUMO

Activin receptor type IIB (ActRIIB) is a transmembrane serine/threonine kinase receptor which plays a pivotal role in regulating the reproduction in vertebrates including teleost. Earlier studies have documented its importance in governing gonadal maturation in higher vertebrates. However, reports on the regulation of fish reproductive system by ActRIIB gene are still limited. Here, we report the identification and characterization of ActRIIB cDNA of Labeo rohita, a commercially important fish species of the Indian subcontinent. The full-length gene encoding rohu ActRIIB was cloned and found to be of 1674 bp in length. Functional similarities were evident from evolutionary analysis across vertebrates. Real-time PCR to measure the expression of ActRIIB transcript in rohu revealed significant mRNA levels in gonads followed by non-reproductive tissues, including the brain, pituitary and muscle. With respect to different gonadal maturation stages, predominant expression of ActRIIB mRNA was observed during the pre-spawning phase of both sexes. To further delineate its role in rohu reproduction, a recombinant protein of the extracellular domain of ActRIIB (rECD-ActRIIB) was produced, and polyclonal antibody is raised against the protein for its immuno-localization studies during different gonadal maturation stages. Strong immunoreactivity was noticed in the pre-vitellogenic oocytes which decreased dramatically in the fully mature oocytes. Similarly, the strong and intense immunoreactivity was found in the spermatids and spermatocytes of the immature testis, and eventually the intensity reduced with the progression of the maturation stage. These results provide the first evidence of the presence of ActRIIB in rohu gonadal tissues. Taken together, our observations lay the groundwork for further understanding and investigating on the potential role of ActRIIB in fish reproduction system in the event of gonadal maturation.


Assuntos
Cyprinidae , Receptores de Activinas Tipo II , Animais , Cyprinidae/genética , Cyprinidae/metabolismo , Feminino , Gônadas/metabolismo , Masculino , RNA Mensageiro/metabolismo , Distribuição Tecidual
12.
Mitochondrial DNA B Resour ; 6(3): 1207-1208, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33829086

RESUMO

Microphis deocata (deocata pipefish), belonging to family Syngnathidae, is one of the important indigenous ornamental fish species listed as near threatened in the IUCN red list. Here, we first report the complete mitochondrial genome of deocata pipefish using Illumina next-generation sequencing platform. The total length of the mitogenome is 16,526 bp. It encompasses 13 protein coding genes, 2 ribosomal rRNAs, and 22 tRNAs. The WANCY region (a cluster of five tRNA genes) contains the 50 bp OL light strand origin of replication. Phylogenetic analysis of Syngnathidae revealed M. deocata to cluster with Oostethus manadensis, forming a sister group with Doryrhamphus japonicas and Dunckerocampus dactyliophorus. The mitochondrial genome sequence data generated in the present study will play an important role in population genetic analysis and developing conservation strategies for this species.

13.
Mitochondrial DNA B Resour ; 6(2): 402-403, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33628875

RESUMO

Labeo catla is a widely cultured species in monoculture and polyculture systems of the Indian subcontinent. In this study, the complete mitochondrial genome sequence of catla was reconstructed from Oxford Nanopore sequence data. The mitochondrial genome is 16,600 bp in length (accession no. is MN830943) which is larger than the previously reported catla mitogenomes. Like other vertebrate mitochondrial genomes, it has 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a putative control region. Most of the mitogenes are encoded on H-strand. Phylogenetic analysis showed that Labeo catla is more closely related to Labeo rohita than other labeo species. The catla mtgenome reported here will facilitate population genetics, phylogenetics and molecular taxonomy of Indian major carps.

14.
DNA Res ; 28(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33416875

RESUMO

The walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering ∼94% of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians' counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.


Assuntos
Peixes-Gato/genética , Peixes-Gato/fisiologia , Proteínas de Peixes/genética , Genoma , Animais , Evolução Molecular , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Filogenia , Sequenciamento Completo do Genoma
15.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142948

RESUMO

Although feed cost is the greatest concern in aquaculture, the inclusion of carbohydrates in the fish diet, and their assimilation, are still not well understood in aquaculture species. We identified molecular events that occur due to the inclusion of high carbohydrate levels in the diets of genetically improved 'Jayanti rohu' Labeo rohita. To reveal transcriptional changes in the liver of rohu, a feeding experiment was conducted with three doses of gelatinized starch (20% (control), 40%, and 60%). Transcriptome sequencing revealed totals of 15,232 (4464 up- and 4343 down-regulated) and 15,360 (4478 up- and 4171 down-regulated) differentially expressed genes. Up-regulated transcripts associated with glucose metabolisms, such as hexokinase, PHK, glycogen synthase and PGK, were found in fish fed diets with high starch levels. Interestingly, a de novo lipogenesis mechanism was found to be enriched in the livers of treated fish due to up-regulated transcripts such as FAS, ACCα, and PPARγ. The insulin signaling pathways with enriched PPAR and mTOR were identified by Kyoto Encyclopedia of Genes and Genome (KEGG) as a result of high carbohydrates. This work revealed for the first time the atypical regulation transcripts associated with glucose metabolism and lipogenesis in the livers of Jayanti rohu due to the inclusion of high carbohydrate levels in the diet. This study also encourages the exploration of early nutritional programming for enhancing glucose efficiency in carp species, for sustainable and cost-effective aquaculture production.


Assuntos
Animais Geneticamente Modificados/metabolismo , Carpas/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Fígado/metabolismo , Análise de Sequência de RNA/métodos , Animais , Animais Geneticamente Modificados/genética , Aquicultura/métodos , Metabolismo dos Carboidratos , Carpas/genética , Regulação da Expressão Gênica , Fígado/patologia , Transdução de Sinais , Transcriptoma
16.
BMC Res Notes ; 13(1): 411, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883365

RESUMO

OBJECTIVE: Labeo catla (catla), one of the three Indian major carps, is native to the Indo-Gangetic riverine system of India as well as the rivers of Pakistan, Bangladesh, Nepal and Myanmar. Its higher growth rate and compatibility with other major carps, specific surface feeding habit, and consumer preference have increased its popularity in carp polyculture systems among the fish farmers in Indian subcontinent. Recent advancement in sequencing technology coupled with massive parallel sequencing platforms has facilitated accelerated genetic improvement in aquaculture species through integration of genomics tools. A draft genome and allied resources are lacking in catla. Therefore, in the present study, we have performed de-novo assembly of Labeo catla for the first time. DATA DESCRIPTION: A male farm reared catla was used for extracting high molecular weight genomic DNA followed by sequencing in Oxford Nanopore and Illumina platforms. Approximately, 80× coverage of sequence data was assembled adopting the hybrid assembly strategy. The assembled genome size of catla was 1.01 Gb containing 5345 scaffolds with N50 value 0.7 Mb and more than 92% BUSCO completeness. Gene annotation resulted in 25,812 predicted genes.


Assuntos
Carpas , Genoma , Animais , Aquicultura , Bangladesh , Sequenciamento de Nucleotídeos em Larga Escala , Índia , Masculino , Anotação de Sequência Molecular , Mianmar , Nepal , Paquistão
18.
Genomics ; 112(1): 32-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325488

RESUMO

The role of microRNA in gene regulation during developmental biology has been well depicted in several organisms. The present study was performed to investigate miRNAs role in the liver tissues during carbohydrate metabolism and their targets in the farmed carp rohu, Labeo rohita, which is economically important species in aquaculture. Using Illumina-HiSeq technology, a total of 22,612,316; 44,316,046 and 13,338,434 clean reads were obtained from three small-RNA libraries. We have identified 138 conserved and 161 novel miRNAs and studies revealed that miR-22, miR-122, miR-365, miR-200, and miR-146 are involved in carbohydrate metabolism. Further analysis depicted mature miRNA and their predicted target sites in genes that were involved in developmental biology, cellular activities, transportation, etc. This is the first report of the presence of miRNAs in liver tissue of rohu and their comparative profile linked with metabolism serves as a vital resource as a biomarker.


Assuntos
Metabolismo dos Carboidratos/genética , Carpas/genética , Fígado/metabolismo , MicroRNAs/metabolismo , Animais , Carpas/metabolismo , Carboidratos da Dieta/administração & dosagem , Regulação da Expressão Gênica , Ontologia Genética , RNA Mensageiro/metabolismo , RNA-Seq
19.
Mar Biotechnol (NY) ; 21(5): 589-595, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31346855

RESUMO

The liver is an important central organ, which controls carbohydrate metabolism through maintaining glucose homeostasis by a tightly regulated system of genes or enzymes. The microRNAs are small non-coding RNAs playing an important role in the regulation of genes associated with developmental biology, physiology, metabolism, etc. Thus, in this study, we have intended to detect liver-specific microRNAs in farmed carp, Labeo bata, upon being fed a diet with different levels of carbohydrates. Here, we have conducted the experiment for 45 days using fingerlings of farmed carp fed with 20% (control), 40%, and 60% gelatinized starch levels. The liver tissues were collected from each treatment and processed for RNA isolation, small RNA library preparation, and high-throughput sequencing using Illumina NexSeq500. Through sequencing, 15,779,417 reads in 20% CHO, 13,959,039 in 40% CHO, and 13,661,950 in 60% CHO reads were generated for control and treated fishes using three small RNA libraries. We have investigated 445 novel and 231 conserved microRNAs in 20%, 40%, and 60% carbohydrate (CHO), respectively, through computational analysis. The differential expression analysis of miRNAs was carried out between different treatments compared with control and this study depicted 117 known and 114 novel miRNA genes involved in carbohydrate metabolic pathways. Further, target prediction and gene ontology analysis revealed that miRNAs were involved in several pathways such as signaling pathway, G protein pathway, complement receptor-mediated pathway, dopamine receptor signaling pathway, epidermal growth factor pathway, and notch signaling pathway. The predicted miRNA sites in targeted genes were associated with cellular activities, developmental biology, DNA binding, Golgi apparatus, extracellular region, catalytic activity, MAPK cascade, etc. Overall, we have generated a vital resource of liver-specific miRNAs involved in metabolic gene regulation. These studies further will help develop miRNA inhibitors to study their role during carbohydrate metabolism in farmed carp.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Fígado/efeitos dos fármacos , MicroRNAs/genética , Amido/administração & dosagem , Ração Animal , Animais , Aquicultura , Carpas , Dieta/métodos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Proteínas de Peixes/classificação , Proteínas de Peixes/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/metabolismo , MicroRNAs/classificação , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Anotação de Sequência Molecular , Receptores de Complemento/genética , Receptores de Complemento/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Amido/metabolismo
20.
J Genet ; 97(5): 1327-1337, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30555081

RESUMO

The phenotypic and microsatellite marker information of nine strains of catla (Catla catla) for growth trait was used to infer relationship within and between strains. This information helped in optimizing the proportion of individuals to be used from each strain while creating a base population for selective breeding. For this purpose, nine strains were collected from different sources and places of India namely West Bengal, Bihar, Odisha, Andhra Pradesh and Uttar Pradesh. Two riverine sources i.e. Ganga and Subarnarekha were also represented among the nine strains collected for base population. They were brought to Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture (ICAR-CIFA) at fry stage and reared separately till fingerlings. After passive integrated transponder tagging fingerlings were stocked in three communal ponds for one year culture. Live body weights were then measured and least square means were obtained after pond effect correction. A wide range of variation was observed among and between strains. Microsatellite markers were used to estimate genetic differences of different strains of catla using pair wise F ST estimates. Overall multi locus F ST, including all loci was estimated to be 0.4137 (P < 0.05), indicating genetic heterogeneity among them. Analysis of molecular variance revealed that, 58.63% of variation was due to within individual variation, 3.45% of variation was due to among individuals within strain and 37.92% was due to among strain variations. Both phenotypic as well as microsatellite data will be used to form a base population of catla with individuals from the stock having broad genetic variation for selective breeding programme.


Assuntos
Carpas/genética , Variação Genética , Repetições de Microssatélites/genética , Seleção Artificial , Alelos , Animais , Aquicultura/métodos , Carpas/classificação , Genética Populacional , Geografia , Índia , Fenótipo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...