Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(16): 7318-7328, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017120

RESUMO

Two-dimensional heterostructures have recently gained broad interest due to potential applications in optoelectronic devices. Their reduced dimensionality leads to novel physical effects beyond conventional bulk electronics. However, the optical properties of the 2D lateral heterojunctions have not been completely characterized due to the limited spatial resolution, requiring nano-optical techniques beyond the diffraction limit. Here, we investigate lateral monolayer WS2-MoS2 heterostructures in a plasmonic Au-Au tip-substrate picocavity using subdiffraction limited tip-enhanced photoluminescence (TEPL) spectroscopy with sub-nanometer tip-sample distance control. We observed more than 3 orders of magnitude PL enhancement by placing a plasmonic Au-coated tip at the resonantly excited heterojunction. We developed a theoretical model of the quantum plasmonic 2D heterojunction, where tunneling of hot electrons between the Au tip and MoS2 leads to the quenching of the MoS2 PL, while simultaneously increasing the WS2 PL, in contrast to the non-resonant reverse transfer. Our simulations show good agreement with the experiments, revealing a range of parameters and enhancement factors corresponding to the switching between the classical and quantum regimes. The controllable photoresponse of the 2D heterojunction can be used in novel nanodevices.

2.
Nanoscale ; 14(22): 8050-8059, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35587784

RESUMO

Two-dimensional transition metal dichalcogenides provide flexible platforms for nanophotonic engineering due to their exceptional mechanical and optoelectronic properties. For example, continuous band gap tunability has been achieved in 2D TMDs by elastic strain engineering. Localized elastic deformations in nanobubbles behave as "artificial atoms" with a spatially varying band gap resulting in funnelling of excitons and photocarriers. Here we present a new method of nanobubble fabrication in monolayer 2D lateral heterostructures using high temperature superacid treatment. We fabricated MoS2 and WS2 nanobubbles and performed near-field imaging with nanoscale resolution using tip-enhanced photoluminescence (TEPL) spectroscopy. TEPL nanoimaging revealed the coupling between MoS2 and WS2 nanobubbles with a large synergistic PL enhancement due to the plasmonic tip, hot electrons, and exciton funnelling. We investigated the contributions of different enhancement mechanisms, and developed a quantum plasmonic model, in good agreement with the experiments. Our work opens new avenues in exploration of novel nanophotonic coupling schemes.

3.
ACS Appl Mater Interfaces ; 14(8): 11006-11015, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35170302

RESUMO

Two-dimensional (2D) semiconducting materials have promising applications in flexible optoelectronics, nanophotonics, and sensing based on the broad tunability of their optical and electronic properties. 2D nanobubbles form exciton funnels due to localized strain that can be used as local emitters for information processing. Their nanoscale optical characterization requires the use of near-field scanning probe microscopy (SPM). However, previous near-field studies of 2D materials were performed on SiO2/Si and metallic substrates using the plasmonic gap mode to increase the signal-to-noise ratio. Another challenge is the deterministic control of bubble size and location. We addressed these challenges by investigating the photoluminescence (PL) signals of freestanding monolayer lateral WSe2-MoSe2 heterostructures under the influence of strain exerted by a plasmonic SPM tip. For first time, we performed tip-enhanced PL imaging of freestanding 2D materials and studied the competition between the PL enhancement mechanisms by nanoindentation as a function of the tip-sample distance. We observed the tunability of PL as a function of bubble size, which opens new possibilities to design optoelectronic nanodevices.

4.
Small ; 18(12): e2106600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088542

RESUMO

2D heterostructures made of transition metal dichalcogenides (TMD) have emerged as potential building blocks for new-generation 2D electronics due to their interesting physical properties at the interfaces. The bandgap, work function, and optical constants are composition dependent, and the spectrum of applications can be expanded by producing alloy-based heterostructures. Herein, the successful synthesis of monolayer and bilayer lateral heterostructures, based on ternary alloys of MoS2(1- x ) Se2 x -WS2(1- x ) Se2 x , is reported by modifying the ratio of the source precursors; the bandgaps of both materials in the heterostructure are continuously tuned in the entire range of chalcogen compositions. Raman and photoluminescence (PL) spatial maps show good intradomain composition homogeneity. Kelvin probe measurements in different heterostructures reveal composition-dependent band alignments, which can further be affected by unintentional electronic doping during the growth. The fabrication of sequential multijunction lateral heterostructures with three layers of thickness, composed of quaternary and ternary alloys, is also reported. These results greatly expand the available tools kit for optoelectronic applications in the 2D realm.

5.
Biophys J ; 120(8): 1443-1453, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607085

RESUMO

Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.


Assuntos
Biofilmes , Xylella , Aderência Bacteriana , Adesão Celular , Xilema
6.
ACS Nano ; 14(10): 14080-14090, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33044054

RESUMO

The optical and electronic properties of 2D semiconductors are intrinsically linked via the strong interactions between optically excited bound species and free carriers. Here we use near-field scanning microwave microscopy (SMM) to image spatial variations in photoconductivity in MoS2-WS2 lateral multijunction heterostructures using photon energy-resolved narrowband illumination. We find that the onset of photoconductivity in individual domains corresponds to the optical absorption onset, confirming that the tightly bound excitons in transition metal dichalcogenides can nonetheless dissociate into free carriers. These photogenerated carriers are most likely n-type and are seen to persist for up to days. Informed by finite element modeling we reveal that they can increase the carrier density by up to 200 times. This persistent photoconductivity appears to be dominated by contributions from the multilayer MoS2 domains, and we attribute the flake-wide response in part to charge transfer across the heterointerface. Spatial correlation of our SMM imaging with photoluminescence (PL) mapping confirms the strong link between PL peak emission photon energy, PL intensity, and the local accumulated charge. This work reveals the spatially and temporally complex optoelectronic response of these systems and cautions that properties measured during or after illumination may not reflect the true dark state of these materials but rather a metastable charged state.

7.
Nat Commun ; 9(1): 3720, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30213976

RESUMO

We present time-integrated four-wave mixing measurements on monolayer MoSe2 in magnetic fields up to 25 T. The experimental data together with time-dependent density function theory calculations provide interesting insights into the biexciton formation and dynamics. In the presence of magnetic fields the coherence at negative and positive time delays is dominated by intervalley biexcitons. We demonstrate that magnetic fields can serve as a control to enhance the biexciton formation and help search for more exotic states of matter, including the creation of multiple exciton complexes and excitonic condensates.

8.
Nature ; 553(7686): 63-67, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300012

RESUMO

Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.

9.
Nano Lett ; 17(10): 5938-5949, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895736

RESUMO

Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.


Assuntos
Antígenos de Protozoários/análise , Técnicas Biossensoriais/instrumentação , Doença de Chagas/diagnóstico , Nanofios/química , Trypanosoma cruzi/isolamento & purificação , Anticorpos Imobilizados/química , Antígenos de Protozoários/genética , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Doença de Chagas/parasitologia , DNA/análise , DNA/genética , Desenho de Equipamento , Humanos , Índio/química , Modelos Moleculares , Fosfinas/química , Propriedades de Superfície , Transistores Eletrônicos , Trypanosoma cruzi/genética
10.
Colloids Surf B Biointerfaces ; 159: 174-182, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28787633

RESUMO

The pathogenicity of Xylella fastidiosa is associated with its systematic colonization of the plant xylem, forming bacterial biofilms. Mechanisms of bacterial transport among different xylem vessels, however, are not completely understood yet, but are strongly influenced by the presence of extracellular polymeric substances (EPS), which surrounds the assembly of cells forming the biofilm. In this work, we show quantitative measurements on the elastic properties of the system composed by EPS and bacterial cell. In order to investigate the mechanical properties of this system, force spectroscopy and confocal Raman measurements were carried out during Xylella fastidiosa subsp. pauca initial stages of adhesion and cluster formation. We show that stiffness progressively decreases with increasing culture growth time, from two to five days. For early adhesion samples, stiffness values are quite different at the bacterial polar and body regions. Lower stiffness values at the cell pole suggest a flexible mechanical response at this region, associated with first cell adhesion to a surface. These results correlate very well with our observations of cell motion within microchannels, under conditions simulating xylem flow. Both the oscillatory movement of vertically attached single cells, as well as the transport of cell clusters within the biofilm matrix can be explained by the presence of softer materials at the cell pole and EPS matrix. Our results may thus add to a more detailed understanding of mechanisms used by cells to migrate among vessels in plant xylem.


Assuntos
Biofilmes/efeitos dos fármacos , Xylella/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Polímeros/farmacologia
11.
J Phys Chem B ; 121(19): 5058-5071, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28459565

RESUMO

A fragment of the human prion protein spanning residues 106-126 (PrP106-126) recapitulates many essential properties of the disease-causing protein such as amyloidogenicity and cytotoxicity. PrP106-126 has an amphipathic characteristic that resembles many antimicrobial peptides (AMPs). Therefore, the toxic effect of PrP106-126 could arise from a direct association of monomeric peptides with the membrane matrix. Several experimental approaches are employed to scrutinize the impacts of monomeric PrP106-126 on model lipid membranes. Porous defects in planar bilayers are observed by using solution atomic force microscopy. Adding cholesterol does not impede defect formation. A force spectroscopy experiment shows that PrP106-126 reduces Young's modulus of planar lipid bilayers. We use Raman microspectroscopy to study the effect of PrP106-126 on lipid atomic vibrational dynamics. For phosphatidylcholine lipids, PrP106-126 disorders the intrachain conformation, while the interchain interaction is not altered; for phosphatidylethanolamine lipids, PrP106-126 increases the interchain interaction, while the intrachain conformational order remains similar. We explain the observed differences by considering different modes of peptide insertion. Finally, electron paramagnetic resonance spectroscopy shows that PrP106-126 progressively decreases the orientational order of lipid acyl chains in magnetically aligned bicelles. Together, our experimental data support the proposition that monomeric PrP106-126 can disrupt lipid membranes by using similar mechanisms found in AMPs.


Assuntos
Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Príons/química , Príons/ultraestrutura , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
12.
Nano Lett ; 16(7): 4656-64, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336224

RESUMO

Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues.


Assuntos
Adesinas Bacterianas/química , Aderência Bacteriana , Biofilmes , Nanofios , Xylella/fisiologia
13.
Sci Rep ; 5: 9856, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891045

RESUMO

Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Xylella/fisiologia , DNA Bacteriano/química , Microscopia Confocal , Microscopia de Fluorescência , Análise Espectral Raman , Eletricidade Estática , Xylella/genética , Xylella/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...