Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8251, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086791

RESUMO

Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.


Assuntos
Angiogênese , Células Endoteliais , Animais , Camundongos , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/metabolismo , Angiopoietinas/metabolismo , Células Endoteliais/metabolismo , Camundongos Knockout
2.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070449

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing syngeneic pancreatic (KCKO) or breast (C57MG) tumors. We observed enhanced tumor growth of pancreatic and breast tumors in the MUC1KO mice compared to the WT mice. Enhanced tumor growth in the MUC1KO mice was associated with increased numbers of suppressive MDSCs and T regulatory (Tregs) cells in the tumor microenvironment. Compared to the WT host, MUC1KO host showed higher levels of iNOS, ARG1, and TGF-ß, thus promoting proliferation of MDSCs with an immature and immune suppressive phenotype. When co-cultured with effector T cells, MDSCs from MUC1KO mice led to higher repression of IL-2 and IFN-γ production by T cells as compared to MDSCs from WT mice. Lastly, MDSCs from MUC1KO mice showed higher levels of c-Myc and activated pSTAT3 as compared to MDSCs from WT mice, suggesting increased survival, proliferation, and prevention of maturation of MDSCs in the MUC1KO host. We report diminished T cell function in the KO versus WT mice. In summary, the data suggest that MUC1 may regulate signaling pathways that are critical to maintain the immunosuppressive properties of MDSCs.


Assuntos
Neoplasias da Mama/metabolismo , Mucina-1/metabolismo , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/metabolismo , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Interferon gama/metabolismo , Interleucina-2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-1/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/citologia , Baço/metabolismo , Fator de Crescimento Transformador beta/sangue , Microambiente Tumoral/genética
3.
J Clin Invest ; 129(12): 5518-5536, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710308

RESUMO

microRNA-21 (miR-21) is the most commonly upregulated miRNA in solid tumors. This cancer-associated microRNA (oncomiR) regulates various downstream effectors associated with tumor pathogenesis during all stages of carcinogenesis. In this study, we analyzed the function of miR-21 in noncancer cells of the tumor microenvironment to further evaluate its contribution to tumor progression. We report that the expression of miR-21 in cells of the tumor immune infiltrate, and in particular in macrophages, was responsible for promoting tumor growth. Absence of miR-21 expression in tumor- associated macrophages (TAMs), caused a global rewiring of their transcriptional regulatory network that was skewed toward a proinflammatory angiostatic phenotype. This promoted an antitumoral immune response characterized by a macrophage-mediated improvement of cytotoxic T-cell responses through the induction of cytokines and chemokines, including IL-12 and C-X-C motif chemokine 10. These effects translated to a reduction in tumor neovascularization and an induction of tumor cell death that led to decreased tumor growth. Additionally, using the carrier peptide pH (low) insertion peptide, we were able to target miR-21 in TAMs, which decreased tumor growth even under conditions where miR-21 expression was deficient in cancer cells. Consequently, miR-21 inhibition in TAMs induced an angiostatic and immunostimulatory activation with potential therapeutic implications.


Assuntos
Macrófagos/imunologia , MicroRNAs/genética , Neoplasias/imunologia , Animais , Quimiocina CXCL10/fisiologia , Citotoxicidade Imunológica , Interleucina-12/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/irrigação sanguínea , Microambiente Tumoral
4.
JCI Insight ; 3(21)2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385722

RESUMO

Fibrosis is a major contributor to organ disease for which no specific therapy is available. MicroRNA-21 (miR-21) has been implicated in the fibrogenetic response, and inhibitors of miR-21 are currently undergoing clinical trials. Here, we explore how miR-21 inhibition may attenuate fibrosis using a proteomics approach. Transfection of miR-21 mimic or inhibitor in murine cardiac fibroblasts revealed limited effects on extracellular matrix (ECM) protein secretion. Similarly, miR-21-null mouse hearts showed an unaltered ECM composition. Thus, we searched for additional explanations as to how miR-21 might regulate fibrosis. In plasma samples from the community-based Bruneck Study, we found a marked correlation of miR-21 levels with several platelet-derived profibrotic factors, including TGF-ß1. Pharmacological miR-21 inhibition with an antagomiR reduced the platelet release of TGF-ß1 in mice. Mechanistically, Wiskott-Aldrich syndrome protein, a negative regulator of platelet TGF-ß1 secretion, was identified as a direct target of miR-21. miR-21-null mice had lower platelet and leukocyte counts compared with littermate controls but higher megakaryocyte numbers in the bone marrow. Thus, to our knowledge this study reports a previously unrecognized effect of miR-21 inhibition on platelets. The effect of antagomiR-21 treatment on platelet TGF-ß1 release, in particular, may contribute to the antifibrotic effects of miR-21 inhibitors.


Assuntos
Matriz Extracelular/efeitos dos fármacos , Fibrose/genética , MicroRNAs/antagonistas & inibidores , MicroRNAs/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ensaios Clínicos como Assunto , Matriz Extracelular/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL/genética , MicroRNAs/genética , Pessoa de Meia-Idade , Miocárdio/patologia , Estudos Prospectivos , Proteômica/métodos , RNA não Traduzido/genética , Fator de Crescimento Transformador beta1/genética , Proteína da Síndrome de Wiskott-Aldrich/efeitos dos fármacos , Proteína da Síndrome de Wiskott-Aldrich/genética
5.
Nat Med ; 24(3): 262-270, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431745

RESUMO

Immunotherapy offers new options for cancer treatment, but efficacy varies across cancer types. Colorectal cancers (CRCs) are largely refractory to immune-checkpoint blockade, which suggests the presence of yet uncharacterized immune-suppressive mechanisms. Here we report that the loss of adenomatosis polyposis coli (APC) in intestinal tumor cells or of the tumor suppressor PTEN in melanoma cells upregulates the expression of Dickkopf-related protein 2 (DKK2), which, together with its receptor LRP5, provides an unconventional mechanism for tumor immune evasion. DKK2 secreted by tumor cells acts on cytotoxic lymphocytes, inhibiting STAT5 signaling by impeding STAT5 nuclear localization via LRP5, but independently of LRP6 and the Wnt-ß-catenin pathway. Genetic or antibody-mediated ablation of DKK2 activates natural killer (NK) cells and CD8+ T cells in tumors, impedes tumor progression, and enhances the effects of PD-1 blockade. Thus, we have identified a previously unknown tumor immune-suppressive mechanism and immunotherapeutic targets particularly relevant for CRCs and a subset of melanomas.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Melanoma/imunologia , Evasão Tumoral/genética , Proteína da Polipose Adenomatosa do Colo/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Citotoxicidade Imunológica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/imunologia , Neoplasias Intestinais/terapia , Células Matadoras Naturais/imunologia , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , PTEN Fosfo-Hidrolase , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Fator de Transcrição STAT5/genética , Transdução de Sinais , beta Catenina/genética
6.
Circ Res ; 118(1): 38-47, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26472816

RESUMO

RATIONALE: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17-92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor-induced endothelial cell (EC) functions is unclear and its regulation is unknown. OBJECTIVE: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17-92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17-92 cluster in the endothelium (miR-17-92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. METHODS AND RESULTS: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17-92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17-92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17-92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17-92 cluster and is a crucial mediator of miR-17-92-induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17-92 is inhibited. CONCLUSIONS: Taken together, our results indicate that VEGF-induced miR-17-92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis.


Assuntos
Endotélio Vascular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , MicroRNAs/biossíntese , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Endotélio Vascular/efeitos dos fármacos , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Knockout , MicroRNAs/genética , Neovascularização Fisiológica/efeitos dos fármacos
7.
BMC Cancer ; 14: 225, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24674692

RESUMO

BACKGROUND: IL-17A is a pro-inflammatory cytokine that is normally associated with autoimmune arthritis and other pro-inflammatory conditions. Recently, IL-17A has emerged as a critical factor in enhancing breast cancer (BC)-associated metastases. We generated immune competent arthritic mouse models that develop spontaneous BC-associated bone and lung metastasis. Using these models, we have previously shown that neutralization of IL-17A resulted in significant reduction in metastasis. However, the underlying mechanism/s remains unknown. METHODS: We have utilized two previously published mouse models for this study: 1) the pro-arthritic mouse model (designated SKG) injected with metastatic BC cell line (4T1) in the mammary fat pad, and 2) the PyV MT mice that develop spontaneous mammary gland tumors injected with type II collagen to induce autoimmune arthritis. Mice were treated with anti-IL-17A neutralizing antibody and monitored for metastasis and assessed for pro-inflammatory cytokines and chemokines associated with BC-associated metastasis. RESULTS: We first corroborate our previous finding that in vivo neutralization of IL-17A significantly reduced metastasis to the bones and lungs in both models. Next, we report that treatment with anti-IL17A antibody significantly reduced the expression of a key chemokine, CXCL12 (also known as stromal derived factor-1 (SDF - 1)) in the bones and lungs of treated mice. CXCL12 is a ligand for CXCR4 (expressed on BC cells) and their interaction is known to be critical for metastasis. Interestingly, levels of CXCR4 in the tumor remained unchanged with treatment. Consequently, protein lysates derived from the bones and lungs of treated mice were significantly less chemotactic for the BC cells than lysates from untreated mice; and addition of exogenous SDF-1 to the lysates from treated mice completely restored BC cell migration. In addition, cytokines such as IL-6 and M-CSF were significantly reduced in the lung and bone lysates following treatment. The data presented suggests that systemic neutralization of IL-17A can block the CXCR4/SDF-1 signaling pathway by reducing the expression of SDF-1 in the metastatic niches and significantly reducing metastasis in both mouse models. CONCLUSION: In our model, neutralization of IL-17A regulates SDF-1 expression in the metastatic niches either directly or indirectly via reducing levels of IL-6 and M-CSF.


Assuntos
Artrite/complicações , Neoplasias Ósseas/patologia , Quimiocina CXCL12/metabolismo , Interleucina-17/antagonistas & inibidores , Neoplasias Pulmonares/patologia , Neoplasias Mamárias Experimentais/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Artrite/induzido quimicamente , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Fator Estimulador de Colônias de Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Receptores CXCR4/metabolismo
8.
Breast Cancer Res ; 15(2): R32, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23577751

RESUMO

INTRODUCTION: Breast cancer remains the second leading cause of cancer-related deaths for women in the United States. Metastasis is regulated not only by intrinsic genetic changes in malignant cells, but also by the microenvironment, especially those associated with chronic inflammation. We recently reported that mice with autoimmune arthritis have significantly increased incidence of bone and lung metastasis and decreased survival associated with breast cancer. In this study, we evaluated the mechanism underlying the increased metastasis. METHODS: We used two mouse models; one that develops spontaneous autoimmune arthritis (SKG mice) injected with metastatic breast cancer cells (4T1), and another that develops spontaneous breast cancer (MMTV-PyV MT mice) injected with type II collagen to induce autoimmune arthritis. Mast cell levels and metastasis were monitored. RESULTS: First, we confirmed that breast tumor-bearing arthritic mice have a significantly higher incidence of bone and lung metastasis than do their nonarthritic counterparts. Next, we showed increased recruitment of mast cells within the primary tumor of arthritic mice, which facilitates metastasis. Next, we report that arthritic mice without any tumors have higher numbers of mast cells in the bones and lungs, which may be the underlying cause for the enhanced lung and bone metastases observed in the arthritic mice. Next, we showed that once the tumor cells populate the metastatic niches (bones and lungs), they further increase the mast cell population within the niche and assist in enhancing metastasis. This may primarily be due to the interaction of c-Kit receptor present on mast cells and stem cell factor (SCF, the ligand for ckit) expressed on tumor cells. Finally, we showed that targeting the SCF/cKit interaction with an anti-ckit antibody reduces the differentiation of mast cells and consequently reduces metastasis. CONCLUSION: This is the first report to show that mast cells may play a critical role in remodeling not only the tumor microenvironment but also the metastatic niche to facilitate efficient metastasis through SCF/cKit interaction in breast cancer with arthritis.


Assuntos
Artrite Experimental/fisiopatologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Neoplasias Pulmonares/secundário , Mastócitos/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fator de Células-Tronco/metabolismo , Animais , Apoptose , Artrite Experimental/complicações , Western Blotting , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , Microambiente Tumoral
9.
Cancer Res ; 71(13): 4432-42, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558393

RESUMO

MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Mucina-1/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Butadienos/farmacologia , Carcinoma Ductal Pancreático/enzimologia , Ciclo Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Fator de Crescimento Epidérmico , Humanos , Proteínas de Filamentos Intermediários/biossíntese , Metaloproteinase 9 da Matriz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mucina-1/genética , Metástase Neoplásica , Proteínas do Tecido Nervoso/biossíntese , Nestina , Nitrilas/farmacologia , Neoplasias Pancreáticas/enzimologia , Fator de Crescimento Derivado de Plaquetas , Inibidores de Proteínas Quinases/farmacologia , Tubulina (Proteína)/biossíntese
10.
Infect Immun ; 76(11): 5120-6, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18765718

RESUMO

Osteomyelitis is an inflammatory disease of the bone that is characterized by the presence of necrotic bone tissue and increased osteoclast activity. Staphylococcus aureus is responsible for approximately 80% of all cases of human osteomyelitis. While the disease is especially difficult to treat, the pathogenesis of S. aureus-induced osteomyelitis is poorly understood. Elucidating the molecular mechanisms by which S. aureus induces osteomyelitis could lead to a better understanding of the disease and its progression and development of new treatments. Osteoblasts can produce several soluble factors that serve to modulate the activity or formation of osteoclasts. Receptor activator of NF-kappaB ligand (RANK-L) and prostaglandin E(2) (PGE(2)) are two such molecules which can promote osteoclastogenesis and stimulate bone resorption. In addition, previous studies in our laboratory have shown that osteoblasts produce inflammatory cytokines, such as interleukin 6, following infection with S. aureus, which could induce COX-2 and in turn PGE(2), further modulating osteoclast recruitment and differentiation. Therefore, we hypothesized that following infection with S. aureus, osteoblasts will express increased levels of RANK-L and PGE(2). The results presented in this study provide evidence for the first time that RANK-L mRNA and protein and PGE(2) expression are upregulated in S. aureus-infected primary osteoblasts. In addition, through the use of the specific COX-2 inhibitor NS 398, we show that when PGE(2) production is inhibited, RANK-L production is decreased. These data suggest a mechanism whereby osteoblasts regulate the production of RANK-L during infection.


Assuntos
Dinoprostona/biossíntese , Osteoblastos/metabolismo , Osteoblastos/microbiologia , Ligante RANK/biossíntese , Infecções Estafilocócicas/metabolismo , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Camundongos , Osteomielite/metabolismo , Osteomielite/microbiologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Staphylococcus aureus
11.
J Bone Miner Res ; 23(1): 30-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17907925

RESUMO

UNLABELLED: Bacterially induced osteoblast apoptosis may be a major contributor to bone loss during osteomyelitis. We provide evidence for the functional expression in osteoblasts of NLRP3, a member of the NLR family of cytosolic receptors that has been implicated in the initiation of programmed cell death. INTRODUCTION: Osteoblasts undergo apoptosis after exposure to intracellular bacterial pathogens commonly associated with osteomyelitis. Death of this bone-forming cell type, in conjunction with increased numbers and activity of osteoclasts, may underlie the destruction of bone tissue at sites of bacterial infection. To date, the mechanisms responsible for bacterially induced apoptotic osteoblast cell death have not been resolved. MATERIALS AND METHODS: We used flow cytometric techniques to determine whether intracellular invasion is needed for maximal apoptotic cell death in primary osteoblasts after challenge with Salmonella enterica. In addition, we used real-time PCR and immunoblot analyses to assess osteoblast expression of members of the nucleotide-binding domain leucine-rich repeat region-containing family of intracellular receptors (NLRs) that have been predicted to be involved in the induction of programmed cell death. Furthermore, we have used co-immunoprecipitation and siRNA techniques to confirm the functionality of such sensors in this cell type. RESULTS: In this study, we showed that invasion of osteoblasts by Salmonella is necessary for maximal induction of apoptosis. We showed that murine and human osteoblasts express NLRP3 (previously known as CIAS1, cryopyrin, PYPAF1, or NALP3) but not NLRC4 (IPAF) and showed that the level of expression of this cytosolic receptor is modulated after bacterial challenge. We showed that osteoblasts express ASC, an adaptor molecule for NLRP3, and that these molecules associate after Salmonella infection. In addition, we showed that a reduction in the expression of NLRP3 attenuates Salmonella-induced reductions in the activity of an anti-apoptotic transcription factor in osteoblasts. Furthermore, we showed that NLRP3 expression is needed for caspase-1 activation and maximal induction of apoptosis in osteoblasts after infection with Salmonella. CONCLUSIONS: The functional expression of NLRP3 in osteoblasts provides a potential mechanism underlying apoptotic cell death of this cell type after challenge with intracellular bacterial pathogens and may be a significant contributory factor to bone loss at sites of infection.


Assuntos
Proteínas de Transporte/biossíntese , Osteoblastos/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio/biossíntese , Caspase 1/metabolismo , Proteínas do Citoesqueleto/biossíntese , Ativação Enzimática , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Osteoblastos/microbiologia , Osteoblastos/fisiologia , Salmonella enterica
12.
Curr Opin Investig Drugs ; 8(11): 887-98, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17979022

RESUMO

Despite current treatment strategies, osteomyelitis is often refractory and recurrent. The bacteria responsible for osteomyelitis can invade bone-forming osteoblasts, which are active participants in the generation of damaging inflammation and bone loss at sites of infection. Therefore, strategies promoting cell-mediated immune responses while limiting inflammation are required for the treatment of chronic bone infections. This review describes the mechanisms utilized by resident bone cells to perceive bacteria, recruit leukocytes to sites of infection and promote osteoclast-mediated bone destruction, as well as novel targets for the therapeutic intervention of these processes.


Assuntos
Reabsorção Óssea/prevenção & controle , Osteíte/prevenção & controle , Osteomielite/complicações , Animais , Reabsorção Óssea/complicações , Humanos , Mediadores da Inflamação/metabolismo , Modelos Biológicos , Osteíte/complicações , Osteíte/metabolismo , Osteoblastos/microbiologia , Osteoblastos/patologia , Osteomielite/imunologia , Osteomielite/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...