Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Plant Sci ; 7: 763, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375635

RESUMO

Phenylpropanoids are a diverse chemical class with immense health benefits that are biosynthesized from the aromatic amino acid L-phenylalanine. This article reviews the progress for accessing variation in phenylpropanoids in germplasm collections, the genetic and molecular basis of phenylpropanoid biosynthesis, and the development of cultivars dense in seed-phenylpropanoids. Progress is also reviewed on high-throughput assays, factors that influence phenylpropanoids, the site of phenylpropanoids accumulation in seed, Genotype × Environment interactions, and on consumer attitudes for the acceptance of staple foods rich in phenylpropanoids. A paradigm shift was noted in barley, maize, rice, sorghum, soybean, and wheat, wherein cultivars rich in phenylpropanoids are grown in Europe and North and Central America. Studies have highlighted some biological constraints that need to be addressed for development of high-yielding cultivars that are rich in phenylpropanoids. Genomics-assisted breeding is expected to facilitate rapid introgression into improved genetic backgrounds by minimizing linkage drag. More research is needed to systematically characterize germplasm pools for assessing variation to support crop genetic enhancement, and assess consumer attitudes to foods rich in phenylpropanoids.

2.
J Appl Genet ; 56(2): 151-61, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25592547

RESUMO

Meeting the food demands and ensuring nutritional security of the ever increasing global population in the face of degrading natural resource base and impending climate change is the biggest challenge of the twenty first century. The consequences of mineral/micronutrient deficiencies or the hidden hunger in the developing world are indeed alarming and need urgent attention. In addressing the problems associated with mineral/micronutrient deficiency, grain legumes as an integral component of the farming systems in the developing world have to play a crucial role. For resource-poor populations, a strategy based on selecting and/or developing grain legume cultivars with grains denser in micronutrients, by biofortification, seems the most appropriate and attractive approach to address the problem. This is evident from the on-going global research efforts on biofortification to provide nutrient-dense grains for use by the poorest of the poor in the developing countries. Towards this end, rapidly growing genomics technologies hold promise to hasten the progress of breeding nutritious legume crops. In conjunction with the myriad of expansions in genomics, advances in other 'omics' technologies particularly plant ionomics or ionome profiling open up novel opportunities to comprehensively examine the elemental composition and mineral networks of an organism in a rapid and cost-effective manner. These emerging technologies would effectively guide the scientific community to enrich the edible parts of grain legumes with bio-available minerals and enhancers/promoters. We believe that the application of these new-generation tools in turn would provide crop-based solutions to hidden hunger worldwide for achieving global nutritional security.


Assuntos
Cruzamento , Produtos Agrícolas/genética , Fabaceae/genética , Valor Nutritivo , Produtos Agrícolas/química , Fabaceae/química , Alimentos Fortificados , Genômica/tendências , Desnutrição/prevenção & controle , Micronutrientes/química , Plantas Geneticamente Modificadas/química , Locos de Características Quantitativas
3.
Springerplus ; 3: 763, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674488

RESUMO

Genetics of micronutrients and their relationships with grain yield and other traits have a direct bearing on devising effective strategies for breeding biofortified crop cultivars. A line × tester study of 196 hybrids and their 28 parental lines of pearl millet (Pennisetum glaucum (L.) R.Br.) showed large genetic variability for Fe and Zn densities with predominantly additive gene action and no better-parent heterosis. Hybrids with high levels of Fe and Zn densities, involved both parental lines having significant positive general combining ability (GCA), and there were highly significant and high positive correlations between performance per se of parental lines and their GCAs. There was highly significant and high positive correlation between the Fe and Zn densities, both for performance per se and GCA. Fe and Zn densities had highly significant and negative, albeit weak, correlations with grain yield and highly significant and moderate positive correlation with grain weight in hybrids. These correlations, however, were non-significant in the parental lines. Thus, to breed hybrids with high Fe and Zn densities would require incorporating these micronutrients in both parental lines. Also, simultaneous selection for Fe and Zn densities based on performance per se would be highly effective in selecting for GCA. Breeding for high Fe and Zn densities with large grain size will be highly effective. However, combining high levels of these micronutrients with high grain yield would require growing larger breeding populations and progenies than breeding for grain yield alone, to make effective selection for desirable recombinants.

4.
Sci Total Environ ; 438: 9-14, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22967492

RESUMO

Nitrous oxide (N(2)O) emissions from Vertisols and Alfisols during sweet sorghum cultivation in the Indian semi-arid tropics were determined using a closed chamber technique during the rainy season (June-October) of 2010. The study included two treatments, nitrogen (N) at a rate of 90 kg/ha and a control without N fertilizer application. The N(2)O emissions strongly coincided with N fertilization and rainfall events. The cumulative N(2)O-N emission from Alfisols was 1.81 N(2)O-N kg/ha for 90 N treatment and 0.15 N(2)O-N kg/ha for the 0 N treatment. Similarly, the N(2)O-N emission from Vertisols was 0.70 N(2)O-N kg/ha for 90 N treatment and 0.09 N(2)O-N kg/ha for the 0 N treatment. The mean N(2)O-N emission factor for fertilizer induced emissions from the Alfisols was 0.90% as compared to 0.32% for Vertisols. Our results suggest that the N(2)O emissions are dependent on the soil properties. Therefore, the monitoring of N(2)O emissions from different agro-ecological regions, having different soil types, rainfall characteristics, cropping systems and crop management practices are necessary to develop comprehensive and accurate green house gas inventories.


Assuntos
Poluentes Atmosféricos/análise , Fertilizantes/efeitos adversos , Óxido Nitroso/análise , Solo/análise , Sorghum/crescimento & desenvolvimento , Agricultura/métodos , Análise de Variância , Cromatografia Gasosa , Fertilizantes/análise , Índia , Tamanho da Partícula , Chuva , Estações do Ano , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...