Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 15: 1239140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744393

RESUMO

Objectives: Epileptiform activity and seizures are present in patients with Alzheimer's disease (AD) and genetic animal models of AD. Amyloid beta 1-42 (Aß1-42) oligomers are thought to be crucial in AD and can cause neuronal hyperexcitability in vitro. However, it is unclear whether these Aß1-42 oligomers cause the increased seizure susceptibility in vivo in people with AD and in AD animal models, nor via which mechanisms it would do so. We investigated this question by injecting Aß1-42 oligomers intracerebrally in mice and assessed its impact on seizure susceptibility. Materials and methods: We performed a single intracerebral injection of synthetic Aß1-42 oligomers or scrambled Aß1-42 in NMRI mice in three different cohorts and subjected them to an i.v. infusion of a chemoconvulsant. We evoked the seizures 1.5 h, 1 week, or 3 weeks after the intracerebral injection of Aß1-42 oligomers, covering also the timepoints and injection locations that were used by others in similar experimental set-ups. Results: With a thioflavine T assay and transmission electron microscopy we confirmed that Aß1-42 monomers spontaneously aggregated to oligomers. We did not find an effect of Aß1-42 oligomers on susceptibility to seizures - evoked 1.5 h, 1 week or 3 weeks - after their intracerebral injection. Significance: The lack of effect of Aß1-42 oligomers on seizure susceptibility in our experiments contrasts with recent findings in similar experimental set-ups. Contradicting conclusions are frequent in experiments with Aß1-42 and they are often attributed to subtle differences in the various aggregation forms of the Aß1-42 used in different experiments. We confirmed the presence of Aß1-42 oligomers with state-of-the-art methods but cannot ascertain that the protein aggregates we used are identical to those used by others. Whether our findings or those previously published best represent the role of Aß1-42 oligomers on seizures in AD remains unclear.

2.
Mol Brain ; 14(1): 144, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544455

RESUMO

Astrocytes express a plethora of G protein-coupled receptors (GPCRs) that are crucial for shaping synaptic activity. Upon GPCR activation, astrocytes can respond with transient variations in intracellular Ca2+. In addition, Ca2+-dependent and/or Ca2+-independent release of gliotransmitters can occur, allowing them to engage in bidirectional neuron-astrocyte communication. The development of designer receptors exclusively activated by designer drugs (DREADDs) has facilitated many new discoveries on the roles of astrocytes in both physiological and pathological conditions. They are an excellent tool, as they can target endogenous GPCR-mediated intracellular signal transduction pathways specifically in astrocytes. With increasing interest and accumulating research on this topic, several discrepancies on astrocytic Ca2+ signalling and astrocyte-mediated effects on synaptic plasticity have emerged, preventing a clear-cut consensus about the downstream effects of DREADDs in astrocytes. In the present study, we performed a side-by-side evaluation of the effects of bath application of the DREADD agonist, clozapine-N-oxide (10 µM), on Gq- and Gi-DREADD activation in mouse CA1 hippocampal astrocytes. In doing so, we aimed to avoid confounding factors, such as differences in experimental procedures, and to directly compare the actions of both DREADDs on astrocytic intracellular Ca2+ dynamics and synaptic plasticity in acute hippocampal slices. We used an adeno-associated viral vector approach to transduce dorsal hippocampi of male, 8-week-old C57BL6/J mice, to drive expression of either the Gq-DREADD or Gi-DREADD in CA1 astrocytes. A viral vector lacking the DREADD construct was used to generate controls. Here, we show that agonism of Gq-DREADDs, but not Gi-DREADDs, induced consistent increases in spontaneous astrocytic Ca2+ events. Moreover, we demonstrate that both Gq-DREADD as well as Gi-DREADD-mediated activation of CA1 astrocytes induces long-lasting synaptic potentiation in the hippocampal CA1 Schaffer collateral pathway in the absence of a high frequency stimulus. Moreover, we report for the first time that astrocytic Gi-DREADD activation is sufficient to elicit de novo potentiation. Our data demonstrate that activation of either Gq or Gi pathways drives synaptic potentiation through Ca2+-dependent and Ca2+-independent mechanisms, respectively.


Assuntos
Astrócitos/fisiologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio/fisiologia , Clozapina/análogos & derivados , Drogas Desenhadas/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Região CA1 Hipocampal/citologia , Clozapina/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Vetores Genéticos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos
4.
Mol Psychiatry ; 26(11): 6125-6148, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34188164

RESUMO

While the transcription factor NEUROD2 has recently been associated with epilepsy, its precise role during nervous system development remains unclear. Using a multi-scale approach, we set out to understand how Neurod2 deletion affects the development of the cerebral cortex in mice. In Neurod2 KO embryos, cortical projection neurons over-migrated, thereby altering the final size and position of layers. In juvenile and adults, spine density and turnover were dysregulated in apical but not basal compartments in layer 5 neurons. Patch-clamp recordings in layer 5 neurons of juvenile mice revealed increased intrinsic excitability. Bulk RNA sequencing showed dysregulated expression of many genes associated with neuronal excitability and synaptic function, whose human orthologs were strongly associated with autism spectrum disorders (ASD). At the behavior level, Neurod2 KO mice displayed social interaction deficits, stereotypies, hyperactivity, and occasionally spontaneous seizures. Mice heterozygous for Neurod2 had similar defects, indicating that Neurod2 is haploinsufficient. Finally, specific deletion of Neurod2 in forebrain excitatory neurons recapitulated cellular and behavioral phenotypes found in constitutive KO mice, revealing the region-specific contribution of dysfunctional Neurod2 in symptoms. Informed by these neurobehavioral features in mouse mutants, we identified eleven patients from eight families with a neurodevelopmental disorder including intellectual disability and ASD associated with NEUROD2 pathogenic mutations. Our findings demonstrate crucial roles for Neurod2 in neocortical development, whose alterations can cause neurodevelopmental disorders including intellectual disability and ASD.


Assuntos
Transtorno Autístico , Neuropeptídeos , Animais , Transtorno Autístico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Prosencéfalo/metabolismo , Fatores de Transcrição/metabolismo
5.
Epilepsia ; 60(2): 337-348, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30597542

RESUMO

OBJECTIVE: Malformations of cortical development are common causes of intellectual disability and epilepsy, yet there is a crucial lack of relevant preclinical models associating seizures and cortical malformations. Here, we describe a novel rat model with bilateral subcortical band heterotopia (SBH) and examine whether this model develops spontaneous epileptic seizures. METHODS: To generate bilateral SBH in rats, we combined RNAi-mediated knockdown of Dcx and in utero electroporation with a tripolar electrode configuration enabling simultaneous transfection of the two brain hemispheres. To determine whether bilateral SBH leads to epileptiform activity, rats of various ages were implanted for telemetric electrocorticographic recordings and histopathological examination was carried out at the end of the recording sessions. RESULTS: By 2 months, rats with bilateral SBH showed nonconvulsive spontaneous seizures consisting of spike-and-wave discharges (SWDs) with dominant frequencies in the alpha and theta bands and secondarily in higher-frequency bands. SWDs occurred during both the dark and the light period, but were more frequent during quiet awake state than during sleep. Also, SWDs were more frequent and lasted longer at older ages. No sex differences were found. Although frequencies and durations of SWDs were found to be uncorrelated with the size of SBH, SWDs were initiated in some occasions from brain hemispheres comprising a larger SBH. Lastly, SWDs exhibited absence-like pharmacological properties, being temporarily alleviated by ethosuximide administration. SIGNIFICANCE: This novel model of bilateral SBH with spontaneous epilepsy may potentially provide valuable new insights into causality between cortical malformations and seizures, and help translational research aiming at designing novel treatment strategies for epilepsy.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Convulsões/fisiopatologia , Vigília/fisiologia , Animais , Modelos Animais de Doenças , Proteína Duplacortina , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Feminino , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Ratos Wistar , Convulsões/complicações
6.
Cereb Cortex ; 29(10): 4253-4262, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30534979

RESUMO

Subcortical band heterotopia (SBH), also known as double-cortex syndrome, is a neuronal migration disorder characterized by an accumulation of neurons in a heterotopic band below the normotopic cortex. The majority of patients with SBH have mild to moderate intellectual disability and intractable epilepsy. However, it is still not clear how cortical networks are organized in SBH patients and how this abnormal organization contributes to improper brain function. In this study, cortical networks were investigated in the barrel cortex in an animal model of SBH induced by in utero knockdown of Dcx, main causative gene of this condition in human patients. When the SBH was localized below the Barrel Field (BF), layer (L) four projection to correctly positioned L2/3 pyramidal cells was weakened due to lower connectivity. Conversely, when the SBH was below an adjacent cortical region, the excitatory L4 to L2/3 projection was stronger due to increased L4 neuron excitability, synaptic strength and excitation/inhibition ratio of L4 to L2/3 connection. We propose that these developmental alterations contribute to the spectrum of clinical dysfunctions reported in patients with SBH.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiopatologia , Sinapses/fisiologia , Animais , Modelos Animais de Doenças , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Técnicas de Silenciamento de Genes , Potenciais da Membrana , Proteínas Associadas aos Microtúbulos/genética , Neuropeptídeos/genética , Ratos Wistar , Córtex Somatossensorial/patologia
7.
Cereb Cortex ; 28(8): 2976-2990, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788228

RESUMO

The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.


Assuntos
Dendritos/fisiologia , Neurônios/citologia , Córtex Somatossensorial/citologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Estimulação Elétrica , Embrião de Mamíferos , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Transdução Genética
8.
Brain Res ; 1692: 118-133, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29705603

RESUMO

Fear memory is essential for survival, and its dysregulation leads to disorders. High altitude hypobaric hypoxia (HH) is known to induce cognitive decline. However, its effect on fear memory is still an enigma. We aimed to investigate the temporal effect of HH on fear conditioning and the underlying mechanism. Adult male Sprague-Dawley rats were trained for fear conditioning and exposed to simulated HH equivalent to 25,000 ft for different durations (1, 3, 7, 14 and 21 days). Subsequently, rats were tested for cued and contextual fear conditioning. Neuronal morphology, apoptosis and DNA fragmentation were studied in the medial prefrontal cortex (mPFC), hippocampus and basolateral amygdala (BLA). We observed significant deficit in cued and contextual fear acquisition (at 1, 3 and 7 days) and consolidation (cued at 1 and 3 days and contextual fear at 1, 3 and 7 days) under HH. HH exposure with retraining showed the earlier restoration of contextual fear memory. Further, we found a gradual increase in the number of pyknotic and apoptotic neurons together with the increase in DNA fragmentation in mPFC, hippocampus, and BLA up to 7 days of HH exposure. The present study concludes that HH exposure equivalent to 25,000 ft induced cued and contextual fear memory deficit (acquisition and consolidation) which is found to be correlated with the neurodegenerative changes in the limbic brain regions.


Assuntos
Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Medo , Hipocampo/patologia , Hipóxia/fisiopatologia , Memória/fisiologia , Animais , Caspase 3/metabolismo , Modelos Animais de Doenças , Reação de Congelamento Cataléptica/fisiologia , Marcação In Situ das Extremidades Cortadas , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
9.
Front Cell Neurosci ; 12: 49, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599709

RESUMO

Background: Sleep deprivation (SD) plagues modern society due to the professional demands. It prevails in patients with mood and neuroinflammatory disorders. Although growing evidence suggests the improvement in the cognitive performance by psychostimulants during sleep-deprived conditions, the impending involved mechanism is rarely studied. Thus, we hypothesized that mood and inflammatory changes might be due to the glial cells activation induced modulation of the inflammatory cytokines during SD, which could be improved by administering psychostimulants. The present study evaluated the role of caffeine/modafinil on SD-induced behavioral and inflammatory consequences. Methods: Adult male Sprague-Dawley rats were sleep deprived for 48 h using automated SD apparatus. Caffeine (60 mg/kg/day) or modafinil (100 mg/kg/day) were administered orally to rats once every day during SD. Rats were subjected to anxious and depressive behavioral evaluation after SD. Subsequently, blood and brain were collected for biochemical, immunohistochemical and molecular studies. Results: Sleep deprived rats presented an increased number of entries and time spent in closed arms in elevated plus maze test and decreased total distance traveled in the open field (OF) test. Caffeine/modafinil treatment significantly improved these anxious consequences. However, we did not observe substantial changes in immobility and anhedonia in sleep-deprived rats. Caffeine/modafinil significantly down-regulated the pro- and up-regulated the anti-inflammatory cytokine mRNA and protein expression in the hippocampus during SD. Similar outcomes were observed in blood plasma cytokine levels. Caffeine/modafinil treatment significantly decreased the microglial immunoreactivity in DG, CA1 and CA3 regions of the hippocampus during SD, however, no significant increase in immunoreactivity of astrocytes was observed. Sholl analysis signified the improvement in the morphological alterations of astrocytes and microglia after caffeine/modafinil administration during SD. Stereological analysis demonstrated a significant improvement in the number of ionized calcium binding adapter molecule I (Iba-1) positive cells (different states) in different regions of the hippocampus after caffeine or modafinil treatment during SD without showing any significant change in total microglial cell number. Eventually, the correlation analysis displayed a positive relationship between anxiety, pro-inflammatory cytokines and activated microglial cell count during SD. Conclusion: The present study suggests the role of caffeine or modafinil in the amelioration of SD-induced inflammatory response and anxious behavior in rats. Highlights - SD induced mood alterations in rats. - Glial cells activated in association with the changes in the inflammatory cytokines. - Caffeine or modafinil improved the mood and restored inflammatory changes during SD. - SD-induced anxious behavior correlated with the inflammatory consequences.

10.
Exp Neurol ; 248: 470-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23920241

RESUMO

It has been established that sleep deprivation (SD) reduces the proliferation of neuronal precursors in the adult hippocampus. It has also been reported that psychostimulant drugs modulate adult neurogenesis. We examined the modulatory role of two psychostimulant drugs modafinil and caffeine on adult neuronal cell proliferation (NCP) during 48 h of total SD. A novel automated cage shaking stimulus was used to induce SD based on animal activity. 5-Bromo-2″-deoxyuridine (BrdU; 50mg/kg/day i.p.) was injected at the onset of the light phase for two days. Rats were successfully sleep deprived for 85-94% of total time. Stereological analysis showed that both caffeine and modafinil treatments during SD improved the number of BrdU positive cells as compared to the SD group. Caffeine treatment during SD, significantly increased early proliferative and post-mitotic stages of doublecortin (DCX) positive cells while modafinil treatment during SD, increased intermediate and post-mitotic stages of DCX positive cells compared to SD+Vehicle group. Brain-Derived Neurotrophic Factor (BDNF) expression on BrdU positive cells as well as in the dentate gyrus (DG) region was decreased significantly after sleep deprivation. Both caffeine and modafinil significantly improved BDNF expression in the DG region. Modafinil, but not caffeine, significantly decreased hippocampal adenosine level during SD in comparison to the SD+Vehicle group. It may be concluded that caffeine or modafinil treatment during 48 h of SD prevents the SD induced decline in neuronal proliferation and differentiation. Caffeine and modafinil induced alterations of NCP during SD may involve modulation of BDNF and adenosine levels.


Assuntos
Compostos Benzidrílicos/farmacologia , Cafeína/farmacologia , Proliferação de Células/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Giro Denteado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Privação do Sono/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Contagem de Células , Corticosterona/sangue , Giro Denteado/citologia , Giro Denteado/metabolismo , Proteína Duplacortina , Masculino , Modafinila , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
11.
Phytomedicine ; 19(10): 924-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22766307

RESUMO

The present study was performed to investigate the effects of Valeriana wallichi (VW) aqueous root extract on sleep-wake profile and level of brain monoamines on Sprague-Dawley rats. Electrodes and transmitters were implanted to record EEG and EMG in freely moving condition and the changes were recorded telemetrically after oral administration of VW in the doses of 100, 200 and 300 mg/kg body weight. Sleep latency was decreased and duration of non-rapid eye movement (NREM) sleep was increased in a dose dependent manner. A significant decrease of sleep latency and duration of wakefulness were observed with VW at doses of 200 and 300 mg/kg. Duration of NREM sleep as well as duration of total sleep was increased significantly after treatment with VW at the doses of 200 and 300 mg/kg. VW also increased EEG slow wave activity during NREM sleep at the doses of 200 and 300 mg/kg. Level of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and hydroxy indole acetic acid (HIAA) were measured in frontal cortex and brain stem after VW treatment at the dose of 200mg/kg. NE and 5HT level were decreased significantly in both frontal cortex and brain stem. DA and HIAA level significantly decreased only in cortex. DOPAC level was not changed in any brain region studied. In conclusion it can be said that VW water extract has a sleep quality improving effect which may be dependent upon levels of monoamines in cortex and brainstem.


Assuntos
Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Extratos Vegetais/farmacologia , Sono/efeitos dos fármacos , Valeriana , Vigília/efeitos dos fármacos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Encéfalo/metabolismo , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Norepinefrina/metabolismo , Fitoterapia , Raízes de Plantas , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/metabolismo
12.
Life Sci ; 91(3-4): 94-9, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22749868

RESUMO

AIMS: The efficacy of modafinil as a countermeasure in the reduction of cognitive decline following 24 h of sleep deprivation (SD) on subjective sleepiness scales, event-related potential (ERP) P300, and contingent negative variation (CNV) was evaluated. MAIN METHODS: Eleven healthy males, age 25-30 years participated. The experiment was performed in five sessions on different days between 7 and 8a.m. Session 1, baseline recordings; Session 2, after one night's SD; Session 3, 48 h of recovery from SD; Session 4, after 1 week of Session 1, following one night's SD along with modafinil (400mg/day); Session 5, 48 h of recovery after SD+modafinil. KEY FINDINGS: Subjective sleepiness scores increased significantly after SD as compared to baseline (P<0.01), but remained unaltered after modafinil supplementation. There was an increase in N100 and P300 peak latencies of ERP following SD (P<0.01), which was reduced with modafinil (P<0.05). There was an increase in CNV M100 and P300 peak latencies after SD (P<0.01) which decreased with the use of modafinil (P<0.05). The CNV reaction time increased following SD (P<0.01) and decreased with the use of modafinil (P<0.05). No significant effects on ERP N200, P200 latencies and P200, P300 amplitudes and CNV N100, M200 peak latencies and M100, M200 amplitudes were observed. SIGNIFICANCE: The results strongly suggest that modafinil in a dose of 400mg/day, reduces the subjective sleepiness and cognitive decline following 24 h of SD.


Assuntos
Compostos Benzidrílicos/farmacologia , Potenciais Evocados P300 , Privação do Sono , Actigrafia/métodos , Adulto , Peso Corporal , Estimulantes do Sistema Nervoso Central/farmacologia , Cognição , Transtornos Cognitivos/metabolismo , Eletrofisiologia/métodos , Humanos , Masculino , Modafinila , Modelos Estatísticos , Neurofisiologia/métodos , Inquéritos e Questionários , Fatores de Tempo , Vigília
13.
J Ethnopharmacol ; 141(1): 537-41, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22414476

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Marsilea quadrifolia Linn (MQ) extract has been used traditionally as sedative and antiepileptic drug in India. AIM OF THIS STUDY: To investigate the anticonvulsive potential of MQ extracts by using behavior and electroencephalographic (EEG) analysis on pentylenetetrazole (PTZ) induced seizure model in rats. MATERIALS AND METHODS: For anticonvulsant effect, 60minutes after administration of MQ, behavior and EEG were analyzed during PTZ (60mg/kg) induced seizures. Changes of EEG power, latency of onset of seizure, seizure severity score, and duration of epileptic seizure were determined. RESULTS: Both the water and ethanol extract of MQ increased the latency of seizure but also decreased duration of epileptic seizure and seizure severity score. This reduction of seizure severity was also observed in EEG recording and EEG power analysis. The effectiveness of MQ ethanol extract is better than MQ water extract. CONCLUSION: Both water and ethanol extract of MQ were effective in reducing the severity of behavioral and EEG seizures induced by PTZ in rats. This study justifies the traditional use of this plant in epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Ondas Encefálicas/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Eletroencefalografia , Marsileaceae , Pentilenotetrazol , Extratos Vegetais/farmacologia , Convulsões/prevenção & controle , Animais , Anticonvulsivantes/isolamento & purificação , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Masculino , Marsileaceae/química , Metanol/química , Atividade Motora/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos , Ratos Wistar , Tempo de Reação , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Convulsões/psicologia , Solventes/química , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...