Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Bioinform ; 17(1)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32229666

RESUMO

Prochlorococcus marinus MIT 9303 is a marine cyanobacterium found in sea waters. It was first isolated from a depth of 100 m in the Sargasso Sea in the year 1992. This cyanobacterium serves as a good model system for scientific research due to the presence of many desirable characteristics like smaller in size, ability to perform photosynthesis and the ease of culture maintenance. The genome of this cyanobacterium encodes for about 3022 proteins. Out of these 3022 proteins, few proteins were annotated as hypothetical proteins. We performed a computational study to characterize one of the hypothetical proteins "P9303_05031" to deduce its functional role in the cell using various bioinformatics techniques. After in-depth analysis, this hypothetical protein showed the conserved domain as of Hsp10 of molecular chaperonins of GroES. In this work, we have predicted the bidirectional best hits for the hypothetical protein P9303_05031 followed by the prediction of protein properties such as primary, secondary and tertiary structures. The existence of the Hsp10 domain indicates its role is essential for the folding of proteins during heat shock. This work represents the first structural and physicochemical study of the hypothetical protein P9303_05031 in Prochlorococcus marinus MIT 9303.


Assuntos
Prochlorococcus , Proteínas de Bactérias/genética , Prochlorococcus/genética
2.
Int J Med Microbiol ; 309(8): 151353, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31521502

RESUMO

Tuberculosis (TB) is the deadly infectious disease challenging the public health globally and its impact is further aggravated by co-infection with HIV and the emergence of drug resistant strains of Mycobacterium tuberculosis. In this study, we attempted to characterise the Rv2004c encoded protein, a member of DosR regulon, for its role in drug resistance. In silico docking analysis revealed that Rv2004c binds with streptomycin (SM). Phosphotransferase assay demonstrated that Rv2004c possibly mediates SM resistance through the aminoglycoside phosphotransferase activity. Further, E. coli expressing Rv2004c conferred resistance to 100µM of SM in liquid broth cultures indicating a mild aminoglycoside phosphotransferase activity of Rv2004c. Moreover, we investigated the role of MSMEG_3942 (an orthologous gene of Rv2004c) encoded protein in intracellular survival, its effect on in-vitro growth and its expression in different stress conditions by over expressing it in Mycobacterium smegmatis (M. smegmatis). MSMEG_3942 overexpressing recombinant M. smegmatis strains grew faster in acidic medium and also showed higher bacillary counts in infected macrophages when compared to M. smegmatis transformed with vector alone. Our results are likely to contribute to the better understanding of the involvement of Rv2004c in partial drug resistance, intracellular survival and adaptation of bacilli to stress conditions.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Macrófagos/microbiologia , Mycobacterium smegmatis/efeitos dos fármacos , Proteínas Quinases/genética , Estreptomicina/farmacologia , Proteínas de Ligação a DNA , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Canamicina Quinase/metabolismo , Simulação de Acoplamento Molecular , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Ligação Proteica , Regulon , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...