Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteomes ; 12(1)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38390965

RESUMO

Membrane proteins are underrepresented during proteome characterizations, primarily owing to their lower solubility. Sodium dodecyl sulfate (SDS) is favored to enhance protein solubility but interferes with downstream analysis by mass spectrometry. Here, we present an improved workflow for SDS depletion using transmembrane electrophoresis (TME) while retaining a higher recovery of membrane proteins. Though higher levels of organic solvent lower proteome solubility, we found that the inclusion of 40% methanol provided optimal solubility of membrane proteins, with 86% recovery relative to extraction with SDS. Incorporating 40% methanol during the electrophoretic depletion of SDS by TME also maximized membrane protein recovery. We further report that methanol accelerates the rate of detergent removal, allowing TME to deplete SDS below 100 ppm in under 3 min. This is attributed to a three-fold elevation in the critical micelle concentration (CMC) of SDS in the presence of methanol, combined with a reduction in the SDS to protein binding ratio in methanol (0.3 g SDS/g protein). MS analysis of membrane proteins isolated from the methanol-assisted workflow revealed enhanced proteome detection, particularly for proteins whose pI contributed a minimal net charge and therefore possessed reduced solubility in a purely aqueous solvent. This protocol presents a robust approach for the preparation of membrane proteins by maximizing their solubility in MS-compatible solvents, offering a tool to advance membrane proteome characterization.

2.
Mass Spectrom Rev ; 42(2): 457-495, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34047392

RESUMO

Top-down proteomics is emerging as a preferred approach to investigate biological systems, with objectives ranging from the detailed assessment of a single protein therapeutic, to the complete characterization of every possible protein including their modifications, which define the human proteoform. Given the controlling influence of protein modifications on their biological function, understanding how gene products manifest or respond to disease is most precisely achieved by characterization at the intact protein level. Top-down mass spectrometry (MS) analysis of proteins entails unique challenges associated with processing whole proteins while maintaining their integrity throughout the processes of extraction, enrichment, purification, and fractionation. Recent advances in each of these critical front-end preparation processes, including minimalistic workflows, have greatly expanded the capacity of MS for top-down proteome analysis. Acknowledging the many contributions in MS technology and sample processing, the present review aims to highlight the diverse strategies that have forged a pathway for top-down proteomics. We comprehensively discuss the evolution of front-end workflows that today facilitate optimal characterization of proteoform-driven biology, including a brief description of the clinical applications that have motivated these impactful contributions.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Eletroforese Capilar/métodos , Proteômica/métodos , Manejo de Espécimes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...