Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Parasitol ; 67(4): 1535-1563, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35962265

RESUMO

BACKGROUND: Malaria epidemics are increasing in East Africa since the 1980s, coincident with rising temperature and widening climate variability. A projected 1-3.5 °C rise in average global temperatures by 2100 could exacerbate the epidemics by modifying disease transmission thresholds. Future malaria scenarios for the Lake Victoria Basin (LVB) are quantified for projected climate scenarios spanning 2006-2100. METHODS: Regression relationships are established between historical (1995-2010) clinical malaria and anaemia cases and rainfall and temperature for four East African malaria hotspots. The vector autoregressive moving average processes model, VARMAX (p,q,s), is then used to forecast malaria and anaemia responses to rainfall and temperatures projected with an ensemble of eight General Circulation Models (GCMs) for climate change scenarios defined by three Representative Concentration Pathways (RCPs 2.6, 4.5 and 8.5). RESULTS: Maximum temperatures in the long rainy (March-May) and dry (June-September) seasons will likely increase by over 2.0 °C by 2070, relative to 1971-2000, under RCPs 4.5 and 8.5. Minimum temperatures (June-September) will likely increase by over 1.5-3.0 °C under RCPs 2.6, 4.5 and 8.5. The short rains (OND) will likely increase more than the long rains (MAM) by the 2050s and 2070s under RCPs 4.5 and 8.5. Historical malaria cases are positively and linearly related to the 3-6-month running means of monthly rainfall and maximum temperature. Marked variation characterizes the patterns projected for each of the three scenarios across the eight General Circulation Models, reaffirming the importance of using an ensemble of models for projections. CONCLUSIONS: The short rains (OND), wet season (MAM) temperatures and clinical malaria cases will likely increase in the Lake Victoria Basin. Climate change adaptation and mitigation strategies, including malaria control interventions could reduce the projected epidemics and cases. Interventions should reduce emerging risks, human vulnerability and environmental suitability for malaria transmission.


Assuntos
Mudança Climática , Malária , Humanos , Lagos , Previsões , Malária/epidemiologia , Temperatura
2.
PLoS One ; 12(5): e0172626, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28562600

RESUMO

To investigate the effects of irrigation on land cover changes and the risk of selected zoonotic pathogens, we carried out a study in irrigated, pastoral and riverine areas in the eastern Kenya. Activities implemented included secondary data analyses to determine land use and land cover (LULC) changes as well as human, livestock and wildlife population trends; entomological surveys to characterize mosquitoes population densities and species distribution by habitat and season; and serological surveys in people to determine the risk of Rift Valley fever virus (RVFV), West Nile fever virus (WNV), dengue fever virus (DFV), Leptospira spp. and Brucella spp. Results demonstrate a drastic decline in vegetation cover over ≈25 years particularly in the irrigated areas where cropland increased by about 1,400% and non-farm land (under closed trees, open to closed herbaceous vegetation, bushlands and open trees) reduced by 30-100%. The irrigated areas had high densities of Aedes mcintoshi, Culex spp. and Mansonia spp. (important vectors for multiple arboviruses) during the wet and dry season while pastoral areas had high densities of Ae. tricholabis specifically in the wet season. The seroprevalences of RVFV, WNV and DFV were higher in the irrigated compared to the pastoral areas while those for Leptospira spp and Brucella spp. were higher in the pastoral compared to the irrigated areas. It is likely that people in the pastoral areas get exposed to Leptospira spp by using water fetched from reservoirs that are shared with livestock and wildlife, and to Brucella spp. by consuming raw or partially cooked animal-source foods such as milk and meat. This study suggests that irrigation increases the risk of mosquito-borne infections while at the same time providing a protective effect against zoonotic pathogens that thrive in areas with high livestock population densities.


Assuntos
Inundações , Zoonoses/epidemiologia , Animais , Humanos , Quênia , Fatores de Risco , Zoonoses/microbiologia
3.
PLoS One ; 11(3): e0152432, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27022918

RESUMO

Community-based conservation (CBC) aims to benefit local people as well as to achieve conservation goals, but has been criticised for taking a simplistic view of "community" and failing to recognise differences in the preferences and motivations of community members. We explore this heterogeneity in the context of Kenya's conservancies, focussing on the livelihood preferences of men and women living adjacent to the Maasai Mara National Reserve. Using a discrete choice experiment we quantify the preferences of local community members for key components of their livelihoods and conservancy design, differentiating between men and women and existing conservancy members and non-members. While Maasai preference for pastoralism remains strong, non-livestock-based livelihood activities are also highly valued and there was substantial differentiation in preferences between individuals. Involvement with conservancies was generally perceived to be positive, but only if households were able to retain some land for other purposes. Women placed greater value on conservancy membership, but substantially less value on wage income, while existing conservancy members valued both conservancy membership and livestock more highly than did non-members. Our findings suggest that conservancies can make a positive contribution to livelihoods, but care must be taken to ensure that they do not unintentionally disadvantage any groups. We argue that conservation should pay greater attention to individual-level differences in preferences when designing interventions in order to achieve fairer and more sustainable outcomes for members of local communities.


Assuntos
Conservação dos Recursos Naturais , Características de Residência , Caracteres Sexuais , Comportamento de Escolha , Feminino , Geografia , Humanos , Renda , Quênia , Masculino
4.
Emerg Infect Dis ; 20(8): 1319-22, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25075637

RESUMO

Dromedary camels are a putative source for human infections with Middle East respiratory syndrome coronavirus. We showed that camels sampled in different regions in Kenya during 1992-2013 have antibodies against this virus. High densities of camel populations correlated with increased seropositivity and might be a factor in predicting long-term virus maintenance.


Assuntos
Doenças dos Animais/epidemiologia , Anticorpos Antivirais/imunologia , Camelus/imunologia , Camelus/virologia , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Doenças dos Animais/história , Doenças dos Animais/transmissão , Animais , Ensaio de Imunoadsorção Enzimática , Geografia , História do Século XX , História do Século XXI , Humanos , Quênia/epidemiologia , Densidade Demográfica
5.
PLoS One ; 9(12): e115989, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25551561

RESUMO

Knowledge of population dynamics is essential for managing and conserving wildlife. Traditional methods of counting wild animals such as aerial survey or ground counts not only disturb animals, but also can be labour intensive and costly. New, commercially available very high-resolution satellite images offer great potential for accurate estimates of animal abundance over large open areas. However, little research has been conducted in the area of satellite-aided wildlife census, although computer processing speeds and image analysis algorithms have vastly improved. This paper explores the possibility of detecting large animals in the open savannah of Maasai Mara National Reserve, Kenya from very high-resolution GeoEye-1 satellite images. A hybrid image classification method was employed for this specific purpose by incorporating the advantages of both pixel-based and object-based image classification approaches. This was performed in two steps: firstly, a pixel-based image classification method, i.e., artificial neural network was applied to classify potential targets with similar spectral reflectance at pixel level; and then an object-based image classification method was used to further differentiate animal targets from the surrounding landscapes through the applications of expert knowledge. As a result, the large animals in two pilot study areas were successfully detected with an average count error of 8.2%, omission error of 6.6% and commission error of 13.7%. The results of the study show for the first time that it is feasible to perform automated detection and counting of large wild animals in open savannahs from space, and therefore provide a complementary and alternative approach to the conventional wildlife survey techniques.


Assuntos
Censos , Processamento de Imagem Assistida por Computador/métodos , Dinâmica Populacional/estatística & dados numéricos , Imagens de Satélites/métodos , África Oriental , Animais , Quênia , Mamíferos , Fotografação , Voo Espacial
6.
Proc Natl Acad Sci U S A ; 110(21): 8399-404, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23671097

RESUMO

A systematic review was conducted by a multidisciplinary team to analyze qualitatively best available scientific evidence on the effect of agricultural intensification and environmental changes on the risk of zoonoses for which there are epidemiological interactions between wildlife and livestock. The study found several examples in which agricultural intensification and/or environmental change were associated with an increased risk of zoonotic disease emergence, driven by the impact of an expanding human population and changing human behavior on the environment. We conclude that the rate of future zoonotic disease emergence or reemergence will be closely linked to the evolution of the agriculture-environment nexus. However, available research inadequately addresses the complexity and interrelatedness of environmental, biological, economic, and social dimensions of zoonotic pathogen emergence, which significantly limits our ability to predict, prevent, and respond to zoonotic disease emergence.


Assuntos
Agricultura , Mudança Climática , Doenças Transmissíveis Emergentes , Interações Hospedeiro-Patógeno , Modelos Biológicos , Zoonoses , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...