Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(7): 075901, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142353

RESUMO

The order-disorder transition in Ni-Al alloys under irradiation represents an interplay between various reordering processes and disordering due to thermal spikes generated by incident high energy particles. Typically, ordering is enabled by diffusion of thermally generated vacancies, and can only take place at temperatures where they are mobile and in sufficiently high concentration. Here, in situ transmission electron micrographs reveal that the presence of He-usually considered to be a deleterious immiscible atom in this material-promotes reordering in Ni_{3}Al at temperatures where vacancies are not effective ordering agents. A rate-theory model is presented, that quantitatively explains this behavior, based on parameters extracted from atomistic simulations. These calculations show that the V_{2}He complex is an effective agent through its high stability and mobility. It is surmised that immiscible atoms may stabilize reordering agents in other materials undergoing driven processes, and preserve ordered phases at temperature where the driven processes would otherwise lead to disorder.

2.
ACS Nano ; 11(11): 10984-10991, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29072899

RESUMO

In the quest to identify more effective catalyst nanoparticles for many industrially important applications, the Au-Pt system has gathered considerable attention. Despite considerable effort the interplay between phase equilibrium behavior and surface segregation in Au-Pt nanoparticles is still poorly understood. Here we investigate the phase equilibrium behavior of 20 nm Au-Pt nanoparticles using a combination of high-resolution scanning transmission electron microscopy and a hybrid Monte Carlo and molecular dynamics atomistic simulation technique. Our approach takes into account the effects of immiscibility, elastic strain, interfacial free energy, and surface segregation. This is used to explain two key phenomena taking place in these nanoparticles. The first is whether the binary system remains immiscible at the nanoscale, and if so what morphology would the secondary phase take. Our findings suggest that even at sizes of 20 nm, thermally equilibrated Au-Pt nanoparticles remain largely immiscible and behave thermodynamically as bulk-like systems. We explain why 20 nm Au-Pt nanoparticles phase separate into hemispheres as opposed to a thick-shelled core-shell structure. These insights are central to further optimization of Au-Pt nanoparticles toward enhanced catalytic activities. The phase-separated Janus particles observed in this study offer enhanced material functionality arising from the nonuniformity of their plasmonic, catalytic, and surface properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...