Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906952

RESUMO

NMR spectroscopy has been applied to virtually all sites within proteins and biomolecules; however, the observation of sulfur sites remains very challenging. Recent studies have examined 77Se as a replacement for sulfur and applied 77Se NMR in both the solution and solid states. As a spin-1/2 nuclide, 77Se is attractive as a probe of sulfur sites, and it has a very large chemical shift range (due to a large chemical shift anisotropy), which makes it potentially very sensitive to structural and/or binding interactions as well as dynamics. Despite being a spin-1/2 nuclide, there have been rather limited studies of 77Se, and the ability to use 1H-indirect detection has been sparse. Some examples exist, but in the absence of a directly bonded, nonexchangeable 1H, these have been largely limited to smaller molecules. We develop and illustrate approaches using double-labeling of 13C and 77Se in proteins that enable more sensitive triple-resonance schemes via multistep coherence transfers and 1H-detection. These methods require specialized hardware and decoupling schemes, which we developed and will be discussed.

2.
J Nucl Med ; 64(7): 1017-1023, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997331

RESUMO

Primary liver cancer is the third leading cause of cancer-related deaths, and its incidence and mortality are increasing worldwide. Hepatocellular carcinoma (HCC) accounts for 80% of primary liver cancer cases. Glypican-3 (GPC3) is a heparan sulfate proteoglycan that histopathologically defines HCC and represents an attractive tumor-selective marker for radiopharmaceutical imaging and therapy for this disease. Single-domain antibodies are a promising scaffold for imaging because of their favorable pharmacokinetic properties, good tumor penetration, and renal clearance. Although conventional lysine-directed bioconjugation can be used to yield conjugates for radiolabeling full-length antibodies, this stochastic approach risks negatively affecting target binding of the smaller single-domain antibodies. To address this challenge, site-specific approaches have been explored. Here, we used conventional and sortase-based site-specific conjugation methods to engineer GPC3-specific human single-domain antibody (HN3) PET probes. Methods: Bifunctional deferoxamine (DFO) isothiocyanate was used to synthesize native HN3 (nHN3)-DFO. Site-specifically modified HN3 (ssHN3)-DFO was engineered using sortase-mediated conjugation of triglycine-DFO chelator and HN3 containing an LPETG C-terminal tag. Both conjugates were radiolabeled with 89Zr, and their binding affinity in vitro and target engagement of GPC3-positive (GPC3+) tumors in vivo were determined. Results: Both 89Zr-ssHN3 and 89Zr-nHN3 displayed nanomolar affinity for GPC3 in vitro. Biodistribution and PET/CT image analysis in mice bearing isogenic A431 and A431-GPC3+ xenografts, as well as in HepG2 liver cancer xenografts, showed that both conjugates specifically identify GPC3+ tumors. 89Zr-ssHN3 exhibited more favorable biodistribution and pharmacokinetic properties, including higher tumor uptake and lower liver accumulation. Comparative PET/CT studies on mice imaged with both 18F-FDG and 89Zr-ssHN3 showed more consistent tumor accumulation for the single-domain antibody conjugate, further establishing its potential for PET imaging. Conclusion: 89Zr-ssHN3 showed clear advantages in tumor uptake and tumor-to-liver signal ratio over the conventionally modified 89Zr-nHN3 in xenograft models. Our results establish the potential of HN3-based single-domain antibody probes for GPC3-directed PET imaging of liver cancers.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos de Domínio Único , Humanos , Animais , Camundongos , Neoplasias Hepáticas/diagnóstico por imagem , Carcinoma Hepatocelular/diagnóstico por imagem , Radioisótopos/química , Glipicanas/química , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Anticorpos Monoclonais/química , Distribuição Tecidual , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química
3.
Anal Chem ; 94(39): 13422-13431, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36136056

RESUMO

α-Ketoglutarate is a key biomolecule involved in a number of metabolic pathways─most notably the TCA cycle. Abnormal α-ketoglutarate metabolism has also been linked with cancer. Here, isotopic labeling was employed to synthesize [1-13C,5-12C,D4]α-ketoglutarate with the future goal of utilizing its [1-13C]-hyperpolarized state for real-time metabolic imaging of α-ketoglutarate analytes and its downstream metabolites in vivo. The signal amplification by reversible exchange in shield enables alignment transfer to heteronuclei (SABRE-SHEATH) hyperpolarization technique was used to create 9.7% [1-13C] polarization in 1 minute in this isotopologue. The efficient 13C hyperpolarization, which utilizes parahydrogen as the source of nuclear spin order, is also supported by favorable relaxation dynamics at 0.4 µT field (the optimal polarization transfer field): the exponential 13C polarization buildup constant Tb is 11.0 ± 0.4 s whereas the 13C polarization decay constant T1 is 18.5 ± 0.7 s. An even higher 13C polarization value of 17.3% was achieved using natural-abundance α-ketoglutarate disodium salt, with overall similar relaxation dynamics at 0.4 µT field, indicating that substrate deuteration leads only to a slight increase (∼1.2-fold) in the relaxation rates for 13C nuclei separated by three chemical bonds. Instead, the gain in polarization (natural abundance versus [1-13C]-labeled) is rationalized through the smaller heat capacity of the "spin bath" comprising available 13C spins that must be hyperpolarized by the same number of parahydrogen present in each sample, in line with previous 15N SABRE-SHEATH studies. Remarkably, the C-2 carbon was not hyperpolarized in both α-ketoglutarate isotopologues studied; this observation is in sharp contrast with previously reported SABRE-SHEATH pyruvate studies, indicating that the catalyst-binding dynamics of C-2 in α-ketoglutarate differ from that in pyruvate. We also demonstrate that 13C spectroscopic characterization of α-ketoglutarate and pyruvate analytes can be performed at natural 13C abundance with an estimated detection limit of 80 micromolar concentration × *%P13C. All in all, the fundamental studies reported here enable a wide range of research communities with a new hyperpolarized contrast agent potentially useful for metabolic imaging of brain function, cancer, and other metabolically challenging diseases.


Assuntos
Ácidos Cetoglutáricos , Teofilina , Catálise , Meios de Contraste , Ácido Pirúvico
4.
ACS Chem Neurosci ; 13(18): 2674-2680, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36040317

RESUMO

One of the most important goals of brain imaging is to define the anatomical connections within the brain. In addition to revealing normal circuitry, studies of neural connections and neuronal transport can show rewiring and degeneration following brain injury and diseases. In this work, a highly sensitive magnetic resonance imaging (MRI)-visible neural tracer that can be used to visualize brain connectivity in vivo is developed. It is based on an oligopeptide with gadolinium chelates appended to the peptide backbone. This peptide construct is a sensitive MRI contrast agent that was conjugated to the classical neurotracer, Cholera-toxin Subunit-B. Injection of this probe enabled it to be used to trace neural connections in vivo. This complements other MRI tracing techniques such as diffusion tensor imaging and manganese-enhanced MRI for neural tracing.


Assuntos
Meios de Contraste , Gadolínio , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Gadolínio/química , Compostos Heterocíclicos , Imageamento por Ressonância Magnética/métodos , Manganês , Sondas Moleculares , Oligopeptídeos , Compostos Organometálicos
5.
J Biomol NMR ; 76(1-2): 29-37, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35320434

RESUMO

Sulfur-containing sites in proteins are of great importance for both protein structure and function, including enzymatic catalysis, signaling pathways, and recognition of ligands and protein partners. Selenium-77 is an NMR active spin-1/2 nucleus that shares many physiochemical properties with sulfur and can be readily introduced into proteins at sulfur sites without significant perturbations to the protein structure. The sulfur-containing amino acid methionine is commonly found at protein-protein or protein-ligand binding sites. Its selenium-containing counterpart, selenomethionine, has a broad chemical shift dispersion useful for NMR-based studies of complex systems. Methods such as (1H)-77Se-13C double cross polarization or {77Se}-13C REDOR could be valuable to map the local environment around selenium sites in proteins but have not been demonstrated to date. In this work, we explore these dipolar transfer mechanisms for structural characterization of the GB1 V39SeM variant of the model protein GB1 and demonstrate that 77Se-13C based correlations can be used to map the local environment around selenium sites in proteins. We have found that the general detection limit is ~ 5 Å, but longer range distances up to ~ 7 Å can be observed as well. This study establishes a framework for the future characterization of selenium sites at protein-protein or protein-ligand binding interfaces.


Assuntos
Selênio , Ligantes , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Selênio/química , Selênio/metabolismo , Selenometionina/metabolismo , Enxofre/química
6.
NMR Biomed ; 34(11): e4588, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34263489

RESUMO

Isocitrate dehydrogenase 1 (IDH1) mutations that generate the oncometabolite 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG) have been identified in many types of tumors and are an important prognostic factor in gliomas. 2-HG production can be determined by hyperpolarized carbon-13 magnetic resonance spectroscopy (HP-13 C-MRS) using [1-13 C]-α-KG as a probe, but peak contamination from naturally occurring [5-13 C]-α-KG overlaps with the [1-13 C]-2-HG peak. Via a newly developed oxidative-Stetter reaction, [1-13 C-5-12 C]-α-KG was synthesized. α-KG metabolism was measured via HP-13 C-MRS using [1-13 C-5-12 C]-α-KG as a probe. [1-13 C-5-12 C]-α-KG was synthesized in high yields, and successfully eliminated the signal from C5 of α-KG in the HP-13 C-MRS spectra. In HCT116 IDH1 R132H cells, [1-13 C-5-12 C]-α-KG allowed for unimpeded detection of [1-13 C]-2-HG. 12 C-enrichment represents a novel method to circumvent spectral overlap, and [1-13 C-5-12 C]-α-KG shows promise as a probe to study IDH1 mutant tumors and α-KG metabolism.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Glutaratos/análise , Ácidos Cetoglutáricos/metabolismo , Células HCT116 , Humanos
7.
Sci Rep ; 11(1): 12155, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108512

RESUMO

Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.


Assuntos
Acetilcisteína/metabolismo , Encéfalo/metabolismo , Isótopos de Carbono/análise , Glutationa/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Proliferação de Células , Humanos , Imageamento por Ressonância Magnética , Camundongos , Oxirredução , Neoplasias Pancreáticas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Free Radic Biol Med ; 131: 18-26, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471347

RESUMO

Effective means to identify the role of reactive oxygen species (ROS) mediating several diseases including cancer, ischemic heart disease, stroke, Alzheimer's and other inflammatory conditions in in vivo models would be useful. The cyclic nitrone 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) is a spin trap frequently used to detect free radicals in vitro using Electron Paramagnetic Resonance (EPR) spectroscopy. In this study, we synthesized 13C-labeled DMPO for hyperpolarization by dynamic nuclear polarization, in which 13C NMR signal increases more than 10,000-fold. This allows in vivo 13C MRI to investigate the feasibility of in vivo ROS detection by the 13C-MRI. DMPO was 13C-labeled at C5 position, and deuterated to prolong the T1 relaxation time. The overall yield achieved for 5-13C-DMPO-d9 was 15%. Hyperpolarized 5-13C-DMPO-d9 provided a single peak at 76 ppm in the 13C-spectrum, and the T1 was 60 s in phosphate buffer making it optimal for in vivo 13C MRI. The buffered solution of hyperpolarized 5-13C-DMPO-d9 was injected into a mouse placed in a 3 T scanner, and 13C-spectra were acquired every 1 s. In vivo studies showed the signal of 5-13C-DMPO-d9 was detected in the mouse, and the T1 decay of 13C signal of hyperpolarized 5-13C-DMPO-d9 was 29 s. 13C-chemical shift imaging revealed that 5-13C-DMPO-d9 was distributed throughout the body in a minute after the intravenous injection. A strong signal of 5-13C-DMPO-d9 was detected in heart/lung and kidney, whereas the signal in liver was small compared to other organs. The results indicate hyperpolarized 5-13C-DMPO-d9 provided sufficient 13C signal to be detected in the mouse in several organs, and can be used to detect ROS in vivo.


Assuntos
Óxidos N-Cíclicos/farmacocinética , Coração/diagnóstico por imagem , Rim/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espécies Reativas de Oxigênio/análise , Animais , Isótopos de Carbono , Óxidos N-Cíclicos/síntese química , Deutério , Feminino , Rim/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Espécies Reativas de Oxigênio/metabolismo , Marcadores de Spin , Detecção de Spin
9.
Carbohydr Res ; 357: 47-52, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22739243

RESUMO

D-Glucose, lactose, maltose, and melibiose were benzoylated with Bz(2)O-Et(3)N reagent to give fully benzoylated ß products. Under the same conditions, D-mannose produced a mixture where the ß-benzoate predominated. Treatment of the foregoing compounds with EtSH at slightly elevated temperature (50-60°C) in the presence of BF(3)·Et(2)O as a promoter gave the corresponding ethyl 1-thio glycosides in high yields. The α-products predominated in all cases in the anomeric mixtures formed. Individual products of all reactions were isolated by chromatography, they were obtained in analytically pure state, and were fully characterized by (1)H and (13)C NMR data and physical constants.


Assuntos
Benzoatos/síntese química , Dissacarídeos/síntese química , Glucose/análogos & derivados , Glucose/síntese química , Benzoatos/química , Boranos/química , Glicosilação , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...