Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(2): e4551, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36565302

RESUMO

Ancestral sequence reconstruction (ASR) is a powerful tool to study the evolution of proteins and thus gain deep insight into the relationships among protein sequence, structure, and function. A major barrier to its broad use is the complexity of the task: it requires multiple software packages, complex file manipulations, and expert phylogenetic knowledge. Here we introduce topiary, a software pipeline that aims to overcome this barrier. To use topiary, users prepare a spreadsheet with a handful of sequences. Topiary then: (1) Infers the taxonomic scope for the ASR study and finds relevant sequences by BLAST; (2) Does taxonomically informed sequence quality control and redundancy reduction; (3) Constructs a multiple sequence alignment; (4) Generates a maximum-likelihood gene tree; (5) Reconciles the gene tree to the species tree; (6) Reconstructs ancestral amino acid sequences; and (7) Determines branch supports. The pipeline returns annotated evolutionary trees, spreadsheets with sequences, and graphical summaries of ancestor quality. This is achieved by integrating modern phylogenetics software (Muscle5, RAxML-NG, GeneRax, and PastML) with online databases (NCBI and the Open Tree of Life). In this paper, we introduce non-expert readers to the steps required for ASR, describe the specific design choices made in topiary, provide a detailed protocol for users, and then validate the pipeline using datasets from a broad collection of protein families. Topiary is freely available for download: https://github.com/harmslab/topiary.


Assuntos
Proteínas , Software , Filogenia , Sequência de Aminoácidos , Proteínas/genética , Proteínas/química , Alinhamento de Sequência , Evolução Molecular
2.
Biochemistry ; 60(3): 170-181, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33433210

RESUMO

In addition to encoding the tertiary fold and stability, the primary sequence of a protein encodes the folding trajectory and kinetic barriers that determine the speed of folding. How these kinetic barriers are encoded is not well understood. Here, we use evolutionary sequence variation in the α-lytic protease (αLP) protein family to probe the relationship between sequence and energy landscape. αLP has an unusual energy landscape: the native state of αLP is not the most thermodynamically favored conformation and, instead, remains folded due to a large kinetic barrier preventing unfolding. To fold, αLP utilizes an N-terminal pro region similar in size to the protease itself that functions as a folding catalyst. Once folded, the pro region is removed, and the native state does not unfold on a biologically relevant time scale. Without the pro region, αLP folds on the order of millennia. A phylogenetic search uncovers αLP homologs with a wide range of pro region sizes, including some with no pro region at all. In the resulting phylogenetic tree, these homologs cluster by pro region size. By studying homologs naturally lacking a pro region, we demonstrate they can be thermodynamically stable, fold much faster than αLP, yet retain the same fold as αLP. Key amino acids thought to contribute to αLP's extreme kinetic stability are lost in these homologs, supporting their role in kinetic stability. This study highlights how the entire energy landscape plays an important role in determining the evolutionary pressures on the protein sequence.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Modelos Moleculares , Filogenia , Dobramento de Proteína , Serina Endopeptidases/química , Proteínas de Bactérias/genética , Estabilidade Enzimática , Cinética , Serina Endopeptidases/genética
3.
PLoS Comput Biol ; 16(9): e1008243, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32991585

RESUMO

Understanding evolution requires detailed knowledge of genotype-phenotype maps; however, it can be a herculean task to measure every phenotype in a combinatorial map. We have developed a computational strategy to predict the missing phenotypes from an incomplete, combinatorial genotype-phenotype map. As a test case, we used an incomplete genotype-phenotype dataset previously generated for the malaria parasite's 'chloroquine resistance transporter' (PfCRT). Wild-type PfCRT (PfCRT3D7) lacks significant chloroquine (CQ) transport activity, but the introduction of the eight mutations present in the 'Dd2' isoform of PfCRT (PfCRTDd2) enables the protein to transport CQ away from its site of antimalarial action. This gain of a transport function imparts CQ resistance to the parasite. A combinatorial map between PfCRT3D7 and PfCRTDd2 consists of 256 genotypes, of which only 52 have had their CQ transport activities measured through expression in the Xenopus laevis oocyte. We trained a statistical model with these 52 measurements to infer the CQ transport activity for the remaining 204 combinatorial genotypes between PfCRT3D7 and PfCRTDd2. Our best-performing model incorporated a binary classifier, a nonlinear scale, and additive effects for each mutation. The addition of specific pairwise- and high-order-epistatic coefficients decreased the predictive power of the model. We evaluated our predictions by experimentally measuring the CQ transport activities of 24 additional PfCRT genotypes. The R2 value between our predicted and newly-measured phenotypes was 0.90. We then used the model to probe the accessibility of evolutionary trajectories through the map. Approximately 1% of the possible trajectories between PfCRT3D7 and PfCRTDd2 are accessible; however, none of the trajectories entailed eight successive increases in CQ transport activity. These results demonstrate that phenotypes can be inferred with known uncertainty from a partial genotype-phenotype dataset. We also validated our approach against a collection of previously published genotype-phenotype maps. The model therefore appears general and should be applicable to a large number of genotype-phenotype maps.


Assuntos
Genótipo , Fenótipo , Animais , Modelos Biológicos , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Incerteza
4.
Proc Natl Acad Sci U S A ; 114(45): 11938-11943, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078365

RESUMO

Evolutionary prediction is of deep practical and philosophical importance. Here we show, using a simple computational protein model, that protein evolution remains unpredictable, even if one knows the effects of all mutations in an ancestral protein background. We performed a virtual deep mutational scan-revealing the individual and pairwise epistatic effects of every mutation to our model protein-and then used this information to predict evolutionary trajectories. Our predictions were poor. This is a consequence of statistical thermodynamics. Proteins exist as ensembles of similar conformations. The effect of a mutation depends on the relative probabilities of conformations in the ensemble, which in turn, depend on the exact amino acid sequence of the protein. Accumulating substitutions alter the relative probabilities of conformations, thereby changing the effects of future mutations. This manifests itself as subtle but pervasive high-order epistasis. Uncertainty in the effect of each mutation accumulates and undermines prediction. Because conformational ensembles are an inevitable feature of proteins, this is likely universal.


Assuntos
Evolução Molecular , Previsões/métodos , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Biologia Computacional/métodos , Epistasia Genética/genética , Mutação/genética
5.
PLoS Comput Biol ; 13(5): e1005541, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28505183

RESUMO

High-order epistasis-where the effect of a mutation is determined by interactions with two or more other mutations-makes small, but detectable, contributions to genotype-fitness maps. While epistasis between pairs of mutations is known to be an important determinant of evolutionary trajectories, the evolutionary consequences of high-order epistasis remain poorly understood. To determine the effect of high-order epistasis on evolutionary trajectories, we computationally removed high-order epistasis from experimental genotype-fitness maps containing all binary combinations of five mutations. We then compared trajectories through maps both with and without high-order epistasis. We found that high-order epistasis strongly shapes the accessibility and probability of evolutionary trajectories. A closer analysis revealed that the magnitude of epistasis, not its order, predicts is effects on evolutionary trajectories. We further find that high-order epistasis makes it impossible to predict evolutionary trajectories from the individual and paired effects of mutations. We therefore conclude that high-order epistasis profoundly shapes evolutionary trajectories through genotype-fitness maps.


Assuntos
Epistasia Genética/genética , Evolução Molecular , Biologia Computacional , Genótipo , Mutação/genética
6.
Genetics ; 205(3): 1079-1088, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100592

RESUMO

High-order epistasis has been observed in many genotype-phenotype maps. These multi-way interactions between mutations may be useful for dissecting complex traits and could have profound implications for evolution. Alternatively, they could be a statistical artifact. High-order epistasis models assume the effects of mutations should add, when they could in fact multiply or combine in some other nonlinear way. A mismatch in the "scale" of the epistasis model and the scale of the underlying map would lead to spurious epistasis. In this article, we develop an approach to estimate the nonlinear scales of arbitrary genotype-phenotype maps. We can then linearize these maps and extract high-order epistasis. We investigated seven experimental genotype-phenotype maps for which high-order epistasis had been reported previously. We find that five of the seven maps exhibited nonlinear scales. Interestingly, even after accounting for nonlinearity, we found statistically significant high-order epistasis in all seven maps. The contributions of high-order epistasis to the total variation ranged from 2.2 to 31.0%, with an average across maps of 12.7%. Our results provide strong evidence for extensive high-order epistasis, even after nonlinear scale is taken into account. Further, we describe a simple method to estimate and account for nonlinearity in genotype-phenotype maps.


Assuntos
Epistasia Genética , Genótipo , Modelos Genéticos , Fenótipo , Bactérias/genética , Mutação Puntual , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...