Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 41(7): 071910, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989388

RESUMO

PURPOSE: A number of different techniques have been developed to reduce radiation dose in x-ray computed tomography (CT) imaging. In this paper, the authors will compare task-based measures of image quality of CT images reconstructed by two algorithms: conventional filtered back projection (FBP), and a new iterative reconstruction algorithm (IR). METHODS: To assess image quality, the authors used the performance of a channelized Hotelling observer acting on reconstructed image slices. The selected channels are dense difference Gaussian channels (DDOG).A body phantom and a head phantom were imaged 50 times at different dose levels to obtain the data needed to assess image quality. The phantoms consisted of uniform backgrounds with low contrast signals embedded at various locations. The tasks the observer model performed included (1) detection of a signal of known location and shape, and (2) detection and localization of a signal of known shape. The employed DDOG channels are based on the response of the human visual system. Performance was assessed using the areas under ROC curves and areas under localization ROC curves. RESULTS: For signal known exactly (SKE) and location unknown/signal shape known tasks with circular signals of different sizes and contrasts, the authors' task-based measures showed that a FBP equivalent image quality can be achieved at lower dose levels using the IR algorithm. For the SKE case, the range of dose reduction is 50%-67% (head phantom) and 68%-82% (body phantom). For the study of location unknown/signal shape known, the dose reduction range can be reached at 67%-75% for head phantom and 67%-77% for body phantom case. These results suggest that the IR images at lower dose settings can reach the same image quality when compared to full dose conventional FBP images. CONCLUSIONS: The work presented provides an objective way to quantitatively assess the image quality of a newly introduced CT IR algorithm. The performance of the model observers using the IR images was always higher than that seen using the FBP images in the authors' SKE and SKE location unknown detection tasks. To achieve a FBP-equivalent image quality in CT systems, the authors can lower the radiation dose by using this IR image reconstruction algorithm. Further studies are warranted using clinical data and human observer to validate these results for more complicated and realistic tasks.


Assuntos
Algoritmos , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Área Sob a Curva , Cabeça/diagnóstico por imagem , Humanos , Modelos Teóricos , Distribuição Normal , Imagens de Fantasmas , Curva ROC , Tomografia Computadorizada por Raios X/instrumentação
2.
J Xray Sci Technol ; 18(3): 251-65, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20714084

RESUMO

The spatial resolution of diagnostic Computed Tomography (CT) has increased substantially, and 3D isotropic sub-millimeter spatial resolution in both axial and helical scan modes is routinely available in the clinic. However, driven by advanced clinical applications, the pursuit for higher spatial resolution and free of aliasing artifacts in diagnostic CT has never stopped. A method to accommodate focal spot wobbling at an arbitrary number of projection views per gantry rotation in CT is presented and evaluated here. The method employs a beta-correction scheme in the row-wise fan-to-parallel rebinning to transform the native cone beam geometry into the cone-parallel geometry under which existing 3D weighted cone beam filtered backprojection algorithms can be utilized for image reconstruction. The experimental evaluation shows that the row-wise fan-to-parallel rebinning with the beta-correction can increase the quantitative in-plane spatial resolution (Modulation Transfer Function) substantially, while the visual spatial resolution can be enhanced significantly. Consequently, the architectural designers of CT scanners are no longer constrained to choosing the number of projection views per rotation determined by gantry geometry. Instead, they can choose the number of projection views per rotation to optimize the trade-offs between in-plane spatial resolution and noise characteristics. Therefore, the presented method is of practical relevance in the architectural design of state-of-the-art diagnostic CT.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Imagens de Fantasmas , Tungstênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA