Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1807, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379786

RESUMO

Enduring behavioral changes upon stress exposure involve changes in gene expression sustained by epigenetic modifications in brain circuits, including the mesocorticolimbic pathway. Brahma (BRM) and Brahma Related Gene 1 (BRG1) are ATPase subunits of the SWI/SNF complexes involved in chromatin remodeling, a process essential to enduring plastic changes in gene expression. Here, we show that in mice, social defeat induces changes in BRG1 nuclear distribution. The inactivation of the Brg1/Smarca4 gene within dopamine-innervated regions or the constitutive inactivation of the Brm/Smarca2 gene leads to resilience to repeated social defeat and decreases the behavioral responses to cocaine without impacting midbrain dopamine neurons activity. Within striatal medium spiny neurons, Brg1 gene inactivation reduces the expression of stress- and cocaine-induced immediate early genes, increases levels of heterochromatin and at a global scale decreases chromatin accessibility. Altogether these data demonstrate the pivotal function of SWI/SNF complexes in behavioral and transcriptional adaptations to salient environmental challenges.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Recompensa
2.
Sci Adv ; 7(43): eabg5970, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34669474

RESUMO

Addictive drugs increase dopamine in the nucleus accumbens (NAc), where it persistently shapes excitatory glutamate transmission and hijacks natural reward processing. Here, we provide evidence, from mice to humans, that an underlying mechanism relies on drug-evoked heteromerization of glutamate N-methyl-d-aspartate receptors (NMDAR) with dopamine receptor 1 (D1R) or 2 (D2R). Using temporally controlled inhibition of D1R-NMDAR heteromerization, we unraveled their selective implication in early phases of cocaine-mediated synaptic, morphological, and behavioral responses. In contrast, preventing D2R-NMDAR heteromerization blocked the persistence of these adaptations. Interfering with these heteromers spared natural reward processing. Notably, we established that D2R-NMDAR complexes exist in human samples and showed that, despite a decreased D2R protein expression in the NAc, individuals with psychostimulant use disorder display a higher proportion of D2R forming heteromers with NMDAR. These findings contribute to a better understanding of molecular mechanisms underlying addiction and uncover D2R-NMDAR heteromers as targets with potential therapeutic value.

3.
EMBO Rep ; 22(12): e51882, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34661342

RESUMO

We show here that the transcription factor Npas4 is an important regulator of medium spiny neuron spine density and electrophysiological parameters and that it determines the magnitude of cocaine-induced hyperlocomotion in mice. Npas4 is induced by synaptic stimuli that cause calcium influx, but not dopaminergic or PKA-stimulating input, in mouse medium spiny neurons and human iPSC-derived forebrain organoids. This induction is independent of ubiquitous kinase pathways such as PKA and MAPK cascades, and instead depends on calcineurin and nuclear calcium signalling. Npas4 controls a large regulon containing transcripts for synaptic molecules, such as NMDA receptors and VDCC subunits, and determines in vivo MSN spine density, firing rate, I/O gain function and paired-pulse facilitation. These functions at the molecular and cellular levels control the locomotor response to drugs of abuse, as Npas4 knockdown in the nucleus accumbens decreases hyperlocomotion in response to cocaine in male mice while leaving basal locomotor behaviour unchanged.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/genética , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Accumbens/metabolismo
4.
Neuropharmacology ; 152: 42-50, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529032

RESUMO

Drug addiction is a chronic and relapsing disorder that leads to compulsive drug intake despite deleterious consequences. By increasing dopamine (DA) in the mesolimbic system, drugs of abuse hijack the brain reward circuitry, which is critical for the development of enduring behavioral alterations. DA mainly acts onto DA D1 (D1R) and D2 (D2R) receptor subtypes, which are positively and negatively coupled to adenylyl cyclase, respectively. Extensive research has aimed at targeting these receptors for the treatment of addiction, however this often results in unwanted side-effects due to the implication of DA receptors in numerous physiological functions. A growing body of evidence indicates that the physical interaction of DA receptors with other receptors can finely tune their function, making DA receptor heteromers promising targets for more specific treatment strategies. An increasing number of articles highlighted the ability of both D1R and D2R to form heteromers, however, most studies carried out to date stem from observations in heterologous systems and the biological significance of DA receptor heteromers in vivo is only emerging. We focused this review on studies that were able to provide insights into functions on D1R and D2R heteromers in drug-evoked adaptations and discuss the limitations of current approaches to study receptor heteromers in vivo. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.


Assuntos
Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Humanos , Drogas Ilícitas/farmacocinética , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias
5.
Biol Psychiatry ; 81(7): 573-584, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567310

RESUMO

BACKGROUND: Addiction relies on persistent alterations of neuronal properties, which depends on gene regulation. Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene that modulates neuronal plasticity underlying learning and memory. Its role in cocaine-induced neuronal and behavioral adaptations remains elusive. METHODS: Acute cocaine-treated mice were used for quantitative reverse-transcriptase polymerase chain reaction, immunocytochemistry, and confocal imaging from striatum. Live imaging and transfection assays for Arc overexpression were performed from primary cultures. Molecular and behavioral adaptations to cocaine were studied from Arc-deficient mice and their wild-type littermates. RESULTS: Arc messenger RNA and proteins are rapidly induced in the striatum after acute cocaine administration, via an extracellular-signal regulated kinase-dependent de novo protein synthesis. Although detected in dendrites, Arc accumulates in the nucleus in active zones of transcription, where it colocalizes with phospho-Ser10-histone H3, an important component of nucleosomal response. In vitro, Arc overexpression downregulates phospho-Ser10-histone H3 without modifying extracellular-signal regulated kinase phosphorylation in the nucleus. In vivo, Arc-deficient mice display decreased heterochromatin domains, a high RNA-polymerase II activity and enhanced c-Fos expression. These mice presented an exacerbated psychomotor sensitization and conditioned place preference induced by low doses of cocaine. CONCLUSIONS: Cocaine induces the rapid induction of Arc and its nuclear accumulation in striatal neurons. Locally, it alters the nucleosomal response, and acts as a brake on chromatin remodeling and gene regulation. These original observations posit Arc as a major homeostatic modulator of molecular and behavioral responses to cocaine. Thus, modulating Arc levels may provide promising therapeutic approaches in drug addiction.


Assuntos
Comportamento Animal/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Cocaína/administração & dosagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Histonas/metabolismo , Locomoção/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...