Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 148: 284-291, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31954124

RESUMO

Enzymatic catalysis is a sustainable alternative for cost-prohibitive catalysts based on noble metals and rare earths. Enzymes can catalyze selective reactions under mild conditions. Enzyme recovery after a reaction for its reuse is still a challenge for industrial application. Herein, a biocompatible magnetic nanocomposite is presented as alternative for enzyme stabilization and easy recovery. The magnetic core of CoFe2O4 provides capabilities for magnetic recovery. Two different functionalization methods based on adsorption of enzyme onto biocompatible hydroxyapatite (HAP) and through covalent bonding using a molecular spacer based on 3-Aminopropyl)triethoxysilane (APTES) have been evaluated. Both enzymatic bio-nanocomposites presented high selectivity for the transesterification reaction of racemic mixtures of (R,S)-1-phenylethanol, with complete conversion of (R)-1-phenylethanol enantiomer. Studies with different solvent and temperature had demonstrated high range of operation conditions due to enzyme stabilization provided by surface attachment. Meanwhile, magnetic properties allowed easy recovery through application of an external magnetic field for enzyme reuse. Results showed high stability of lipase covalently bond to CoFe2O4/HAP over several reaction cycles.


Assuntos
Durapatita/química , Lipase/química , Nanocompostos/química , Adsorção , Biocatálise , Catálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Esterificação , Proteínas Fúngicas/química , Fenômenos Magnéticos , Magnetismo/métodos , Solventes/química , Estereoisomerismo , Temperatura
2.
RSC Adv ; 9(38): 22116-22123, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35518899

RESUMO

Gold nanoparticles (Au NPs) have been widely employed in catalysis. Here, we report on the synthesis and catalytic evaluation of a hybrid material composed of Au NPs deposited at the surface of magnetic cobalt ferrite (CoFe2O4). Our reported approach enabled the synthesis of well-defined Au/CoFe2O4 NPs. The Au NPs were uniformly deposited at the surface of the support, displayed spherical shape, and were monodisperse in size. Their catalytic performance was investigated towards the reduction of 4-nitrophenol and the selective oxidation of dimethylphenylsilane to dimethylphenylsilanol. The material was active towards both transformations. In addition, the LSPR excitation in Au NPs could be employed to enhance the catalytic performance, which was demonstrated in the 4-nitrophenol reduction. Finally, the magnetic support allowed for the easy recovery and reuse of the Au/CoFe2O4 NPs. In this case, our data showed that no significant loss of performance took place even after 10 reaction cycles in the oxidation of dimethylphenylsilane to dimethylphenylsilanol. Overall, our results indicate that Au/CoFe2O4 are interesting systems for catalytic applications merging high performances, recovery and re-use, and enhancement of activities under solar light illumination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA