Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 121(8): 1802-1811, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165239

RESUMO

Melittin is a venom peptide that disrupts lipid bilayers at temperatures below the liquid-crystalline to gel phase transition temperature (Tc). Notably, the ability of melittin to disrupt acidic dimyristoylphosphatidylglycerol (DMPG) bilayers was weaker than its ability to disrupt neutral dimyristoylphosphatidylcholine bilayers. The structure and orientation of melittin bound to DMPG bilayers were revealed by analyzing the 13C chemical shift anisotropy of [1-13C]-labeled melittin obtained from solid-state 13C NMR spectra. 13C chemical shift anisotropy showed oscillatory shifts with the index number of residues. Analysis of the chemical shift oscillation properties indicated that melittin bound to a DMPG membrane adopts a bent α-helical structure with tilt angles for the N- and C-terminal helices of -32 and +30°, respectively. The transmembrane melittin in DMPG bilayers indicates that the peptide protrudes toward the C-terminal direction from the core region of the lipid bilayer to show a pseudotransmembrane bent α-helix. Molecular dynamics simulation was performed to characterize the structure and interaction of melittin with lipid molecules in DMPG bilayers. The simulation results indicate that basic amino acid residues in melittin interact strongly with lipid head groups to generate a pseudo-transmembrane alignment. The N-terminus is located within the lipid core region and disturbs the lower surface of the lipid bilayer.


Assuntos
Abelhas/química , Bicamadas Lipídicas/química , Meliteno/química , Fosfatidilgliceróis/química , Sequência de Aminoácidos , Animais , Anisotropia , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
2.
Phys Chem Chem Phys ; 15(23): 8890-901, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23552643

RESUMO

Calcitonin (CT) is an amyloid fibril forming peptide. Since salmon calcitonin (sCT), having Leu residues (Leu12, Leu16 or Leu19) instead of Tyr12, Phe16 or Phe19 for human calcitonin (hCT), is known to form the fibrils much slower than hCT, hCTs mutated to Leu residues at the position of 16 (F16L-hCT), 19 (F19L-hCT), and 12, 16 and 19 (TL-hCT) were examined to reveal the role of aromatic side-chains on amyloid fibrillation using solid-state (13)C NMR. The detailed kinetics were analyzed using a two-step reaction mechanism such as nucleation and fibril elongation with the rate constants of k1 and k2, respectively. The k2 values of hCT mutants were significantly slower than that of hCT at a neutral pH, although they were almost the same at an acidic pH. The (13)C chemical shifts of the labeled sites showed that the conformations of monomeric hCT mutants take α-helices as viewed from the Gly10 moiety. The hCT mutants formed fibrils and during the fibril formation, the α-helix around Gly10-Phe22 changed to the ß-sheet, and the major structures around Ala26-Ala31 were random coil in the fibrils. Molecular dynamics simulation was performed for the ß-sheet system of hCT9-23 and its mutants F16L-hCT9-23, F19L-hCT9-23 and TL-hCT9-23. In one of the stable fibril structures, Phe16 of hCT interacts with Phe19 of the next strand alternatively. In the hCT mutants, lack of Phe16 and Phe19 interaction causes significant instability as compared with the hCT fibril, leading to the reduction of k2 values, as observed experimentally in the hCT mutants at a neutral pH.


Assuntos
Amiloide/química , Amiloide/metabolismo , Calcitonina/química , Calcitonina/metabolismo , Amiloide/genética , Amiloide/ultraestrutura , Calcitonina/genética , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Mutação Puntual , Estrutura Secundária de Proteína
5.
Biochim Biophys Acta ; 1798(2): 167-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19615331

RESUMO

The first proton transfer of bacteriorhodopsin (bR) occurs from the protonated Schiff base to the anionic Asp 85 at the central part of the protein in the L to M states. Low-frequency dynamics accompanied by this process can be revealed by suppressed or recovered intensities (SRI) analysis of site-directed (13)C solid-state NMR spectra of 2D crystalline preparations. First of all, we examined a relationship of fluctuation frequencies available from [1-(13)C]Val- and [3-(13)C]Ala-labeled preparations, by taking the effective correlation time of internal methyl rotations into account. We analyzed the SRI data of [1-(13)C]Val-labeled wild-type bR and D85N mutants, as a function of temperature and pH, respectively, based on so-far assigned peaks including newly assigned or revised ones. Global conformational change of the protein backbone, caused by neutralization of the anionic D85 by D85N, can be visualized by characteristic displacement of peaks due to the conformation-dependent (13)C chemical shifts. Concomitant dynamics changes if any, with fluctuation frequencies in the order of 10(4) Hz, were evaluated by the decreased peak intensities in the B-C and D-E loops of D85N mutant. The resulting fluctuation frequencies, owing to subsequent, accelerated dynamics changes in the M-like state by deprotonation of the Schiff base at alkaline pH, were successfully evaluated based on the SRI plots as a function of pH, which were varied depending upon the extent of interference of induced fluctuation frequency with frequency of magic angle spinning or escape from such interference. Distinguishing fluctuation frequencies between the higher and lower than 10(4) Hz is now possible, instead of a simple description of the data around 10(4) Hz available from one-point data analysis previously reported.


Assuntos
Substituição de Aminoácidos , Bacteriorodopsinas/química , Halobacterium salinarum/química , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular/métodos , Bacteriorodopsinas/genética , Isótopos de Carbono/química , Halobacterium salinarum/genética , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína/genética
6.
Chem Phys Lipids ; 158(1): 54-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19138679

RESUMO

Amyloid beta-peptide (Abeta) is a major component of plaques in Alzheimer's disease, and formation of senile plaques has been suggested to originate from regions of neuronal membrane rich in gangliosides. We analyzed the mode of interaction of Abeta with lipid bilayers by multinuclear NMR using (31)P nuclei. We found that Abeta (1-40) strongly perturbed the bilayer structure of dimyristoylphosphatidylcholine (DMPC), to form a non-lamellar phase (most likely micellar). The ganglioside GM1 potentiated the effect of Abeta (1-40), as viewed from (31)P NMR. The difference of the isotropic peak intensity between DMPC/Abeta and DMPC/GM1/Abeta suggests a specific interaction between Abeta and GM1. We show that in the DMPC/GM1/Abeta system there are three lipid phases, namely a lamellar phase, a hexagonal phase and non-oriented lipids. The latter two phases are induced by the presence of the Abeta peptide, and facilitated by GM1.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Dimiristoilfosfatidilcolina/metabolismo , Gangliosídeo G(M1)/metabolismo , Bicamadas Lipídicas/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos beta-Amiloides/química , Dimiristoilfosfatidilcolina/química , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química
7.
Photochem Photobiol ; 84(4): 921-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18363620

RESUMO

Pharaonis phoborhodopsin (ppR or sensory rhodopsin II) is a negative phototaxis receptor of Natronomonas pharaonis, and forms a complex, which transmits the photosignal into cytoplasm, with its cognate transducer (pHtrII). We examined a possible local dynamics change of ppR and its D75N mutant complexed with pHtrII, using solid-state (13)C NMR of [3-(13)C]Ala- and [1-(13)C]Val-labeled preparations. We distinguished Ala C(beta) (13)C signals of relatively static stem (Ala221) in the C-terminus of the receptors from those of flexible tip (Ala228, 234, 236 and 238), utilizing a mutant with truncated C-terminus. The local fluctuation frequency at the C-terminal tip was appreciably decreased when ppR was bound to pHtrII, while it was increased when D75N, that mimics the signaling state because of disrupted salt bridge between C and G helices prerequisite for the signal transfer, was bound to pHtrII. This signal change may be considered with the larger dissociation constant of the complex between pHtrII and M-state of ppR. At the same time, it turned out that fluctuation frequency of cytoplasmic portion of pHtrII is lowered when ppR is replaced by D75N in the complex with pHtrII. This means that the C-terminal tip partly participates in binding with the linker region of pHtrII in the dark, but this portion might be released at the signaling state leading to mutual association of the two transducers in the cytoplasmic regions within the ppR/pHtrII complex.


Assuntos
Halorrodopsinas/química , Rodopsinas Sensoriais/química , Alanina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Halorrodopsinas/genética , Halorrodopsinas/metabolismo , Cinética , Espectroscopia de Ressonância Magnética/métodos , Natronobacterium/genética , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/metabolismo , Transdução de Sinais
8.
Biochim Biophys Acta ; 1768(12): 3090-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18036552

RESUMO

Local dynamics of interhelical loops in bacteriorhodopsin (bR), the extracellular BC, DE and FG, and cytoplasmic AB and CD loops, and helix B were determined on the basis of a variety of relaxation parameters for the resolved 13C and 15N signals of [1-13C]Tyr-, [15N]Pro- and [1-13C]Val-, [15N]Pro-labeled bR. Rotational echo double resonance (REDOR) filter experiments were used to assign [1-13C]Val-, [15N]Pro signals to the specific residues in bR. The previous assignments of [1-13C]Val-labeled peaks, 172.9 or 171.1 ppm, to Val69 were revised: the assignment of peak, 172.1 ppm, to Val69 was made in view of the additional information of conformation-dependent 15N chemical shifts of Pro bonded to Val in the presence of 13C-15N correlation, although no assignment of peak is feasible for 13C nuclei not bonded to Pro. 13C or 15N spin-lattice relaxation times (T1), spin-spin relaxation times under the condition of CP-MAS (T2), and cross relaxation times (TCH and TNH) for 13C and 15N nuclei and carbon or nitrogen-resolved, 1H spin-lattice relaxation times in the rotating flame (1H T1 rho) for the assigned signals were measured in [1-13C]Val-, [15N]Pro-bR. It turned out that V69-P70 in the BC loop in the extracellular side has a rigid beta-sheet in spite of longer loop and possesses large amplitude motions as revealed from 13C and 15N conformation-dependent chemical shifts and T1, T2, 1H T1 rho and cross relaxation times. In addition, breakage of the beta-sheet structure in the BC loop was seen in bacterio-opsin (bO) in the absence of retinal.


Assuntos
Bacteriorodopsinas/química , Espectroscopia de Ressonância Magnética/métodos , Sequência de Aminoácidos , Isótopos de Carbono/química , Halobacterium salinarum/metabolismo , Dados de Sequência Molecular , Isótopos de Nitrogênio/química , Estrutura Secundária de Proteína , Prótons
9.
Biochim Biophys Acta ; 1768(12): 3145-61, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17964534

RESUMO

The 3D structures or dynamic feature of fully hydrated membrane proteins are very important at ambient temperature, in relation to understanding their biological activities, although their data, especially from the flexible portions such as surface regions, are unavailable from X-ray diffraction or cryoelectron microscope at low temperature. In contrast, high-resolution solid-state NMR spectroscopy has proved to be a very convenient alternative means to be able to reveal their dynamic structures. To clarify this problem, we describe here how we are able to reveal such structures and dynamic features, based on intrinsic probes from high-resolution solid-state NMR studies on bacteriorhodopsin (bR) as a typical membrane protein in 2D crystal, regenerated preparation in lipid bilayer and detergents. It turned out that their dynamic features are substantially altered upon their environments where bR is present. We further review NMR applications to study structure and dynamics of a variety of membrane proteins, including sensory rhodopsin, rhodopsin, photoreaction centers, diacylglycerol kinases, etc.


Assuntos
Bacteriorodopsinas/química , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Membrana/química , Isótopos de Carbono , Modelos Biológicos
10.
J Phys Chem B ; 111(30): 9172-8, 2007 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-17625826

RESUMO

beta-Strand peptides are known to assemble into either antiparallel (AP) or parallel (P) beta-sheet forms which are very important motifs for protein folding and fibril formations occurring in silk fibroin or amyloid proteins. Well-resolved 1H NMR signals including NH protons were observed for alanine tripeptides (Ala)3 with the AP and P structures as well as (Ala)n (n = 4-6) by high-field/fast magic-angle spinning NMR. Amide NH and amino NH3+ 1H signals of (Ala)3 with the P structure were well resonated at 7.5 and 8.9 ppm, respectively, whereas they were not resolved for the AP structure. Notably, NH 1H signals of (Ala)3 and (Ala)4 taking the P structure are resonated at higher field than those of the AP structure by 1.0 and 1.1 ppm, respectively. Further, NH 15N signals of (Ala)3 with the AP structure were resonated at lower field by 2 to 5 ppm than those of (Ala)3 with the P structure. These relative 1H and 15N hydrogen bond shifts of the P structure with respect to those of the AP structure are consistent with the relative hydrogen bond lengths of the interstrand N-H...O=C bonds. Distinction between the two crystallographically independent chains present in the AP and P structures was feasible by 15N chemical shifts but not by 1H chemical shifts because of insufficient spectral resolution in the latter. Calculated 1H and 15N shielding constants by density functional theory are generally consistent with the experimental data, although some discrepancies remain depending upon the models used.


Assuntos
Alanina/química , Peptídeos/química , Algoritmos , Amiloide/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Estrutura Molecular , Isótopos de Nitrogênio , Dobramento de Proteína , Estrutura Secundária de Proteína , Prótons
11.
Photochem Photobiol ; 83(2): 253-62, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17576344

RESUMO

The 3D structure of bacteriorhodopsin (bR) obtained by X-ray diffraction or cryo-electron microscope studies is not always sufficient for a picture at ambient temperature where dynamic behavior is exhibited. For this reason, a site-directed solid-state 13C NMR study of fully hydrated bR from purple membrane (PM), or a distorted or disrupted lattice, is very valuable in order to gain insight into the dynamic picture. This includes the surface structure, at the physiologically important ambient temperature. Almost all of the 13C NMR signals are available from [3-13C]Ala or [1-13C]Val-labeled bR from PM, although the 13C NMR signals from the surface areas, including loops and transmembrane alpha-helices near the surface (8.7 angstroms depth), are suppressed for preparations labeled with [1-13C]Gly, Ala, Leu, Phe, Tyr, etc. due to a failure of the attempted peak-narrowing by making use of the interfered frequency of the frequency of fluctuation motions with the frequency of magic angle spinning. In particular, the C-terminal residues, 226-235, are present as the C-terminal alpha-helix which is held together with the nearby loops to form a surface complex, although the remaining C-terminal residues undergo isotropic motion even in a 2D crystalline lattice (PM) under physiological conditions. Surprisingly, the 13C NMR signals could be further suppressed even from [3-13C]Ala- or [1-13C]Val-bR, due to the acquired fluctuation motions with correlation times in the order of 10(-4) to 10(-5) s, when the 2D lattice structure is instantaneously distorted or completely disrupted, either in photo-intermediate, removed retinal or when embedded in the lipid bilayers.


Assuntos
Bacteriorodopsinas/química , Cristalização , Proteínas de Membrana/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Estrutura Secundária de Proteína , Propriedades de Superfície , Termodinâmica
13.
Photochem Photobiol ; 83(2): 339-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17052134

RESUMO

We have recorded 13C solid state NMR spectra of [3-13C]Ala-labeled pharaonis phoborhodopsin (ppR) and its mutants, A149S and A149V, complexed with the cognate transducer pharaonis halobacterial transducer II protein (pHtrII) (1-159), to gain insight into a possible role of their cytoplasmic surface structure including the C-terminal alpha-helix and E-F loop for stabilization of the 2:2 complex, by both cross-polarization magic angle spinning (CP-MAS) and dipolar decoupled (DD)-MAS NMR techniques. We found that 13C CP-MAS NMR spectra of [3-13C]Ala-ppR, A149S and A149V complexed with the transducer pHtrII are very similar, reflecting their conformation and dynamics changes caused by mutual interactions through the transmembrane alpha-helical surfaces. In contrast, their DD-MAS NMR spectral features are quite different between [3-13C]Ala-A149S and A149V in the complexes with pHtrII: 13C DD-MAS NMR spectrum of [3-13C]Ala-A149S complex is rather similar to that of the uncomplexed form, while the corresponding spectral feature of A149V complex is similar to that of ppR complex in the C-terminal tip region. This is because more flexible surface structure detected by the DD-MAS NMR spectra are more directly influenced by the dynamics changes than the CP-MAS NMR. It turned out, therefore, that an altered surface structure of A149S resulted in destabilized complex as viewed from the 13C NMR spectrum of the surface areas, probably because of modified conformation at the corner of the helix E in addition to the change of hydropathy. It is, therefore, concluded that the surface structure of ppR including the C-terminal alpha-helix and the E-F loops is directly involved in the stabilization of the complex through conformational stability of the helix E.


Assuntos
Proteínas Arqueais/química , Halorrodopsinas/química , Halorrodopsinas/genética , Rodopsinas Sensoriais/química , Rodopsinas Sensoriais/genética , Substituição de Aminoácidos , Proteínas Arqueais/efeitos da radiação , Halobacteriaceae/química , Halobacteriaceae/genética , Halobacteriaceae/efeitos da radiação , Halorrodopsinas/efeitos da radiação , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/efeitos da radiação , Rodopsinas Sensoriais/efeitos da radiação
14.
Photochem Photobiol ; 83(2): 346-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17076543

RESUMO

Bacteriorhodopsin (bR) is a retinal protein in purple membrane of Halobacterium salinarum, which functions as a light-driven proton pump. We have detected pressure-induced isomerization of retinal in bR by analyzing 15N cross polarization-magic angle spinning (CP-MAS) NMR spectra of [zeta-15N]Lys-labeled bR. In the 15N-NMR spectra, both all-trans and 13-cis retinal configurations have been observed in the Lys N(zeta) in protonated Schiff base at 148.0 and 155.0 ppm, respectively, at the MAS frequency of 4 kHz in the dark. When the MAS frequency was increased up to 12 kHz corresponding to the sample pressure of 63 bar, the 15N-NMR signals of [zeta-15N]Lys in Schiff base of retinal were broadened. On the other hand, other [zeta-15N]Lys did not show broadening. Subsequently, the increased signal intensity of [zeta-15N]Lys in Schiff base of 13-cis retinal at 155.0 ppm was observed when the MAS frequency was decreased from 12 to 4 kHz. These results showed that the equilibrium constant of [all-trans-bR]/[13-cis-bR] in retinal decreased by the pressure of 63 bar. It was also revealed that the structural changes induced by the pressure occurred in the vicinity of retinal. Therefore, microscopically, hydrogen-bond network around retinal would be disrupted or distorted by a constantly applied pressure. It is, therefore, clearly demonstrated that increased pressure induced by fast MAS frequencies generated isomerization of retinal from all-trans to 13-cis state in the membrane protein bR.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/efeitos da radiação , Halobacterium salinarum/química , Halobacterium salinarum/efeitos da radiação , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fotoquímica , Pressão , Retinaldeído/química , Bases de Schiff/química , Estereoisomerismo
15.
Biochim Biophys Acta ; 1758(2): 181-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16542636

RESUMO

13C NMR spectra of [3-(13)C]Ala- and [1-(13)C]Val-labeled D85N mutant of bacteriorhodopsin (bR) reconstituted in egg PC or DMPC bilayers were recorded to gain insight into their secondary structures and dynamics. They were substantially suppressed as compared with those of 2D crystals, especially at the loops and several transmembrane alphaII-helices. Surprisingly, the 13C NMR spectra of [3-(13)C]Ala-D85N turned out to be very similar to those of [3-(13)C]Ala-bR in lipid bilayers, in spite of the presence of globular conformational and dynamics changes in the former as found from 2D crystalline preparations. No further spectral change was also noted between the ground (pH 7) and M-like state (pH 10) as far as D85N in lipid bilayers was examined, in spite of their distinct changes in the 2D crystalline state. This is mainly caused by that the resulting 13C NMR peaks which are sensitive to conformation and dynamics changes in the loops and several transmembrane alphaII-helices of the M-like state are suppressed already by fluctuation motions in the order of 10(4)-10(5) Hz interfered with frequencies of magic angle spinning or proton decoupling. However, 13C NMR signal from the cytoplasmic alpha-helix protruding from the membrane surface is not strongly influenced by 2D crystal or monomer. Deceptively simplified carbonyl 13C NMR signals of the loop and transmembrane alpha-helices followed by Pro residues in [1-(13)C]Val-labeled bR and D85N in 2D crystal are split into two peaks for reconstituted preparations in the absence of 2D crystalline lattice. Fortunately, 13C NMR spectral feature of reconstituted [1-(13)C]Val and [3-(13)C]Ala-labeled bR and D85N was recovered to yield characteristic feature of 2D crystalline form in gel-forming lipids achieved at lowered temperatures.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Substituição de Aminoácidos , Cristalização , Dimiristoilfosfatidilcolina/química , Halobacterium salinarum/química , Halobacterium salinarum/genética , Bicamadas Lipídicas/química , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Conformação Proteica , Termodinâmica
16.
Biophys J ; 89(5): 3214-22, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16113109

RESUMO

Morphological changes of DMPC, DLPC, and DPPC bilayers containing melittin (lecithin/melittin molar ratio of 10:1) around the gel-to-liquid crystalline phase transition temperatures (Tc) were examined by a variety of biophysical methods. First, giant vesicles with the diameters of approximately 20 microm were observed by optical microscopy for melittin-DMPC bilayers at 27.9 degrees C. When the temperature was lowered to 24.9 degrees C (Tc = 23 degrees C for the neat DMPC bilayers), the surface of vesicles became blurred and dynamic pore formation was visible in the microscopic picture taken at different exposure times. Phase separation and association of melittin molecules in the bilayers were further detected by fluorescent microscopy and mass spectrometry, respectively. These vesicles disappeared completely at 22.9 degrees C. It was thus found that the melittin-lecithin bilayers reversibly undergo their fusion and disruption near the respective Tcs. The fluctuation of lipids is, therefore, responsible for the membrane fusion above the Tc, and the association of melittin molecules causes membrane fragmentation below the Tc. Subsequent magnetic alignments were observed by solid-state (31)P NMR spectra for the melittin-lecithin vesicles at a temperature above the respective Tcs. On the other hand, additional large amplitude motion induced by melittin at a temperature near the Tc breaks down the magnetic alignment.


Assuntos
Reagentes de Ligações Cruzadas/farmacologia , Bicamadas Lipídicas/química , Meliteno/química , 1,2-Dipalmitoilfosfatidilcolina/química , Fenômenos Biofísicos , Biofísica , Reagentes de Ligações Cruzadas/química , Dimiristoilfosfatidilcolina/química , Íons/química , Lipossomos , Espectroscopia de Ressonância Magnética , Magnetismo , Fluidez de Membrana , Microscopia de Fluorescência , Modelos Moleculares , Transição de Fase , Fosfatidilcolinas/química , Fosfatidilgliceróis , Potássio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Fatores de Tempo , Temperatura de Transição
17.
Chem Phys Lipids ; 132(1): 101-12, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15530452

RESUMO

We have compared site-directed 13C solid-state NMR spectra of [3-13C]Ala- and/or [1-13C]Val-labeled membrane proteins, including bacteriorhodopsin (bR), pharaonis phoborhodopin (ppR), its cognate transducer (pHtrII) and Escherichia coli diacylglycerol kinase (DGK), in two-dimensional (2D) crystal, lipid bilayers, and detergent. Restricted fluctuation motions of these membrane proteins due to oligomerization of bR by specific protein-protein interactions in the 2D crystalline lattice or protein complex between ppR and pHtrII provide the most favorable environment to yield well-resolved, fully visible 13C NMR signals for [3-13C]Ala-labeled proteins. In contrast, several signals from such membrane proteins were broadened or lost owing to interference of inherent fluctuation frequencies (10(4)-10(5)Hz) with frequency of either proton decoupling or magic angle spinning, if their 13C NMR spectra were recorded as a monomer in lipid bilayers at ambient temperature. The presence of such protein dynamics is essential for the respective proteins to achieve their own biological functions. Finally, spectral broadening found for bR and DGK in detergents were discussed.


Assuntos
Detergentes/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Fluidez de Membrana , Proteínas de Membrana/química , Isótopos de Carbono , Cristalografia/métodos , Movimento (Física) , Complexos Multiproteicos/química , Pós , Conformação Proteica
18.
Biosci Biotechnol Biochem ; 68(8): 1743-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15322359

RESUMO

The interaction of a tea catechin, epigallocatechin gallate (EGCg), with the model membrane of dimyristoylphosphatidylcholine (DMPC) was studied by solid-state (31)P and (2)H NMR. The (31)P chemical shift anisotropy of the DMPC phosphate group decreased on addition of EGCg. The (2)H NMR spectrum of [4-(2)H]EGCg, which is deuterated at the 4-position, in the DMPC liposomes gave deuterium nuclei with much smaller quadrupole splittings than those in the solid phase. These (31)P and (2)H NMR observations provide direct experimental evidence that the EGCg molecule interacts with the lipid bilayers.


Assuntos
Catequina/análogos & derivados , Catequina/química , Dimiristoilfosfatidilcolina/química , Flavonoides/química , Bicamadas Lipídicas/química , Fenóis/química , Chá/química , Deutério/química , Espectroscopia de Ressonância Magnética , Polifenóis
19.
Eur Biophys J ; 33(7): 580-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15133647

RESUMO

13C NMR spectra of [1-13C]Val- or -Pro-labeled bacteriorhodopsin (bR) and its single or double mutants, including D85N, were recorded at various pH values to reveal conformation and dynamics changes in the transmembrane alpha-helices, in relation to proton release and uptake between bR and the M-like state caused by modified charged states at Asp85 and the Schiff base (SB). It was found that the D85N mutant acquired local fluctuation motion with a frequency of 10(4) Hz in the transmembrane B alpha-helix, concomitant with deprotonation of SB in the M-like state at pH 10, as manifested from a suppressed 13C NMR signal of the [1-13C]-labeled Val49 residue. Nevertheless, local dynamics at Pro50 neighboring with Val49 turned out to be unchanged, irrespective of the charged state of SB as viewed from the 13C NMR of [1-13C]-labeled Pro50. This means that the transmembrane B alpha-helix is able to acquire the fluctuation motion with a frequency of 10(4) Hz beyond the kink at Pro50 in the cytoplasmic side. Concomitantly, fluctuation motion at the C helix with frequency in the order of 10(4) Hz was found to be prominent, due to deprotonation of SB at pH 10, as viewed from the 13C NMR signal of Pro91. Accordingly, we have proposed here a novel mechanism as to proton uptake and transport based on a dynamic aspect that a transient environmental change from a hydrophobic to hydrophilic nature at Asp96 and SB is responsible for the reduced p Ka value which makes proton uptake efficient, as a result of acquisition of the fluctuation motion at the cytoplasmic side of the transmembrane B and C alpha-helices in the M-like state. Further, it is demonstrated that the presence of a van der Waals contact of Val49 with Lys216 at the SB is essential to trigger this sort of dynamic change, as revealed from the 13C NMR data of the D85N/V49A mutant.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/efeitos da radiação , Membrana Celular/química , Citoplasma/química , Espectroscopia de Ressonância Magnética/métodos , Bombas de Próton/química , Bacteriorodopsinas/genética , Isótopos de Carbono , Luz , Transferência Linear de Energia/efeitos da radiação , Movimento (Física) , Mutagênese Sítio-Dirigida , Conformação Proteica/efeitos da radiação , Estrutura Terciária de Proteína/efeitos da radiação , Bombas de Próton/efeitos da radiação , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos da radiação , Relação Estrutura-Atividade
20.
Biophys J ; 86(5): 3131-40, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111426

RESUMO

We have recorded (13)C NMR spectra of the [3-(13)C]Ala, [1-(13)C]Val-labeled pharaonis transducer pHtrII(1-159) in the presence and absence of phoborhodopsin (ppR or sensory rhodopsin II) in egg phosphatidylcholine or dimyristoylphosphatidylcholine bilayers by means of site-directed (amino acid specific) solid-state NMR. Two kinds of (13)C NMR signals of [3-(13)C]Ala-pHtrII complexed with ppR were clearly seen with dipolar decoupled magic angle spinning (DD-MAS) NMR. One of these resonances was at the peak position of the low-field alpha-helical peaks (alpha(II)-helix) and is identified with cytoplasmic alpha-helices protruding from the bilayers; the other was the high-field alpha-helical peak (alpha(I)-helix) and is identified with the transmembrane alpha-helices. The first peaks, however, were almost completely suppressed by cross-polarization magic angle spinning (CP-MAS) regardless of the presence or absence of ppR or by DD-MAS NMR in the absence of ppR. This is caused by an increased fluctuation frequency of the cytoplasmic alpha-helix from 10(5) Hz in the uncomplexed states to >10(6) Hz in the complexed states, leading to the appearance of peaks that were suppressed because of the interference of the fluctuation frequency with the frequency of proton decoupling (10(5) Hz), as viewed from the (13)C NMR spectra of [3-(13)C]Ala-labeled pHtrII. Consistent with this view, the (13)C DD-MAS NMR signals of the cytoplasmic alpha-helices of the complexed [3-(13)C]Ala-pHtrII in the dimyristoylphosphatidylcholine (DMPC) bilayer were partially suppressed at 0 degrees C due to a decreased fluctuation frequency at the low temperature. In contrast, examination of the (13)C CP-MAS spectra of [1-(13)C]Val-labeled complexed pHtrII showed that the (13)C NMR signals of the transmembrane alpha-helix were substantially suppressed. These spectral changes are again interpreted in terms of the increased fluctuation frequency of the transmembrane alpha-helices from 10(3) Hz of the uncomplexed states to 10(4) Hz of the complexed states. These findings substantiate the view that the transducers alone are in an aggregated or clustered state but the ppR-pHtrII complex is not aggregated. We show that (13)C NMR is a very useful tool for achieving a better understanding of membrane proteins which will serve to clarify the molecular mechanism of signal transduction in this system.


Assuntos
Alanina/química , Proteínas Arqueais/química , Carotenoides/química , Halorrodopsinas , Espectroscopia de Ressonância Magnética/métodos , Rodopsinas Sensoriais , Valina/química , Sequência de Aminoácidos , Archaea , Carbono/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Dimiristoilfosfatidilcolina/química , Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Conformação Molecular , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...