Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396699

RESUMO

Dengue virus (DENV) causes dengue fever and dengue hemorrhagic fever, and DENV infection kills 20,000 people annually worldwide. Therefore, the development of anti-DENV drugs is urgently needed. Sofosbuvir (SOF) is an effective drug for HCV-related diseases, and its triphosphorylated metabolite inhibits viral RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of HCV. (2'R)-2'-Deoxy-2'-fluoro-2'-methyluridine (FMeU) is the dephosphorylated metabolite produced from SOF. The effects of SOF and FMeU on DENV1 replication were analyzed using two DENV1 replicon-based methods that we previously established. First, a replicon-harboring cell assay showed that DENV1 replicon replication in human hepatic Huh7 cells was decreased by SOF but not by FMeU. Second, a transient replicon assay showed that DENV1 replicon replication in Huh7 cells was decreased by SOF; however, in hamster kidney BHK-21 cells, it was not suppressed by SOF. Additionally, the replicon replication in Huh7 and BHK-21 cells was not affected by FMeU. Moreover, we assessed the effects of SOF on infectious DENV1 production. SOF suppressed infectious DENV1 production in Huh7 cells but not in monkey kidney Vero cells. To examine the substrate recognition of the HCV and DENV1 RdRps, the complex conformation of SOF-containing DENV1 RdRp or HCV RdRp was predicted using AlphaFold 2. These results indicate that SOF may be used as a treatment for DENV1 infection.


Assuntos
Hepatite C , Sofosbuvir , Animais , Cricetinae , Chlorocebus aethiops , Humanos , Sofosbuvir/farmacologia , Antivirais/farmacologia , Células Vero , RNA Polimerase Dependente de RNA , Replicação Viral , Hepacivirus/genética
2.
Curr Protoc ; 3(9): e892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37725690

RESUMO

Cyclic diadenosine monophosphate (c-di-AMP) is a bacterial cyclic dinucleotide (CDN) comprising two adenosine monophosphates covalently linked by two 3',5'-phosphodiester bonds. c-di-AMP works as a second messenger, regulating many biological processes in bacteria such as cell wall homeostasis, DNA integrity, and sporulation via specific protein and/or RNA receptors. Moreover, c-di-AMP can function as an immunomodulatory agent in eukaryote cells via the stimulator of interferon genes (STING) signaling pathway. This protocol describes the chemical synthesis of two c-di-AMP analogs with a sulfur atom at the 4'-position of the furanose ring instead of an oxygen atom: c-di-4'-thioAMP (1) and cAMP-4'-thioAMP (2). Analogs 1 and 2 have resistance to phosphodiesterase-mediated degradation and are therefore useful for understanding the diverse biological phenomena regulated by c-di-AMP. In this protocol, two 4'-thioadenosine monomers are initially prepared via a Pummerer-like reaction assisted by hypervalent iodine. The CDN skeleton is then constructed through two key reactions based on phosphoramidite chemistry: dimerization of two appropriately protected nucleoside monomers to produce a linear dinucleotide, followed by macrocyclization of the resulting linear dinucleotide to form the CDN skeleton. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 4'-thioadenosine monomers 13 and 14 Basic Protocol 2: Preparation of c-di-4'-thioAMP (1) and cAMP-4'-thioAMP (2).


Assuntos
Fosfatos de Dinucleosídeos , Tionucleosídeos , Homeostase , AMP Cíclico
3.
Molecules ; 28(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050028

RESUMO

5-Amino-1-ß-D-ribofuranosylimidazole-4-carboxamide 5'-monophosphate (ZMP) is a central intermediate in de novo purine nucleotide biosynthesis. Its nucleobase moiety, 5-aminoimidazole-4-carboxamide (Z-base), is considered an ambiguous base that can pair with any canonical base owing to the rotatable nature of its 5-carboxamide group. This idea of ambiguous base pairing due to free rotation of the carboxamide has been applied to designing mutagenic antiviral nucleosides, such as ribavirin and T-705. However, the ambiguous base-pairing ability of Z-base has not been elucidated, because the synthesis of Z-base-containing oligomers is problematic. Herein, we propose a practical method for the synthesis of Z-base-containing DNA oligomers based on the ring-opening reaction of an N1-dinitrophenylhypoxanthine (HxaDNP) base. Thermal denaturation studies of the resulting oligomers revealed that the Z-base behaves physiologically as an A-like nucleobase, preferentially forming pairs with T. We tested the behavior of Z-base-containing DNA oligomers in enzyme-catalyzed reactions: in single nucleotide insertion, Klenow fragment DNA polymerase recognized Z-base as an A-like analog and incorporated dTTP as a complementary nucleotide to Z-base in the DNA template; in PCR amplification, Taq DNA polymerase similarly incorporated dTTP as a complementary nucleotide to Z-base. Our findings will contribute to the development of new mutagenic antiviral nucleoside analogs.


Assuntos
Aminoimidazol Carboxamida , DNA , Pareamento de Bases , Nucleosídeos , Nucleotídeos
4.
Bioorg Med Chem Lett ; 83: 129172, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746352

RESUMO

As technologies using RNA or DNA have been developed, various chemical modifications of nucleosides have been attempted to increase the stability of oligonucleotides. Since it is known that 2'-OMe-modification greatly contributes to increasing the stability of oligonucleotides, we added 2'-OMe to our previously developed 4'-selenonucleoside and 5'-homo-4'-selenonucleoside as the modified monomers for oligonucleotide: 2'-methoxy-4'-selenouridine (2'-OMe-4'-Se-U) and 5'-homo-2'-methoxy-4'-selenouridine (5'-homo-2'-OMe-4'-Se-U). We synthesized oligonucleotides containing the chemically modified 4'-selenouridine and evaluated their thermal stability and nuclease resistance. In conclusion, the nuclease stability of the oligonucleotide containing 5'-homo-2'-OMe-4'-selenouridine increased while its thermal stability decreased.


Assuntos
Oligonucleotídeos , Compostos Organosselênicos , Oligonucleotídeos/genética , Compostos Organosselênicos/farmacologia , RNA , Uridina
5.
Cell Rep ; 41(12): 111868, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543137

RESUMO

STING, an endoplasmic reticulum (ER)-resident receptor for cyclic di-nucleotides (CDNs), is essential for innate immune responses. Upon CDN binding, STING moves from the ER to the Golgi, where it activates downstream type-I interferon (IFN) signaling. General cargo proteins exit from the ER via concentration at ER exit sites. However, the mechanism of STING concentration is poorly understood. Here, we visualize the ER exit sites of STING by blocking its transport at low temperature or by live-cell imaging with the cell-permeable ligand bis-pivSATE-2'F-c-di-dAMP, which we have developed. After ligand binding, STING forms punctate foci at non-canonical ER exit sites. Unbiased proteomic screens and super-resolution microscopy show that the Golgi-resident protein ACBD3/GCP60 recognizes and concentrates ligand-bound STING at specialized ER-Golgi contact sites. Depletion of ACBD3 impairs STING ER-to-Golgi trafficking and type-I IFN responses. Our results identify the ACBD3-mediated non-canonical cargo concentration system that drives the ER exit of STING.


Assuntos
Interferon Tipo I , Proteômica , Ligantes , Proteínas de Membrana/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Interferon Tipo I/metabolismo , Transporte Proteico/fisiologia
6.
Bioorg Med Chem ; 76: 117093, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36434923

RESUMO

A large number of chemically modified oligonucleotides (ONs) have been developed for RNA-based technologies. In most modified RNAs, the characteristic 2'-hydroxyl (2'-OH) groups are removed to enhance both nuclease resistance and hybridization ability. However, the importance of the 2'-OH group in RNA structure and function is well known. Here, we report the synthesis and properties of 4'-selenoRNA in which all four nucleoside units retain the 2'-OH groups but contain a selenium atom instead of an oxygen atom at the 4'-position of the furanose ring. 4'-SelenoRNA has enhanced ability to form duplexes with RNA, and high endonuclease resistance despite the presence of the 2'-OH groups. X-ray crystallography analysis showed that the 4'-selenoRNA duplex adopts an A-conformation, similar to natural RNA, although one 4'-selenocytidine residue has unusual South-type sugar puckering. Furthermore, preliminary studies using 4'-seleno-modified siRNAs suggest that 4'-selenoRNA may be applicable to RNA interference technology. Collectively, our results raise the possibility of a new class of modified RNA in which 2'-OH groups do not need to be masked.


Assuntos
Endonucleases , RNA
7.
Org Biomol Chem ; 20(26): 5245-5248, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35726625

RESUMO

CRISPR-Cas9-mediated DNA editing relies on guide RNAs (gRNAs) that direct site-specific DNA cleavage by the Cas endonuclease. Because natural gRNA is susceptible to intracellular degradation, it is desirable to chemically protect it for efficient editing. Using 4'-thioribonucleoside 5'-triphosphates and T7 transcription, we have prepared 4'-thio-modified gRNAs that guide Cas9-mediated DNA cleavage. This approach is a simple way to obtain chemically modified RNA suitable for CRISPR-Cas9 DNA editing.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , RNA , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
8.
Chem Pharm Bull (Tokyo) ; 70(5): 310-315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491185

RESUMO

DNA and RNA are ubiquitous molecules responsible for storage and transmission of genetic information and together comprise the central dogma of molecular biology. However, the recent emergence of synthetic genetic polymers is providing an opportunity to challenge the fundamental principles of life. Herein, we describe the ongoing attempts to rewrite the central dogma with 4'-thioDNA and 4'-thioRNA, which feature a sulfur instead of an oxygen atom in the furanose ring moiety. Using reconstituted Escherichia coli gene expression machinery, studies have shown that the genetic information conserved in 4'-thioDNA can be transcribed to 4'-thioRNA and eventually translated into protein, mirroring the processes that occur in nature. Such studies underscore the feasibility of controlling life by substances other than DNA and RNA.


Assuntos
DNA , RNA , DNA/metabolismo , Polímeros/metabolismo
9.
Chem Pharm Bull (Tokyo) ; 70(3): 220-225, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34955490

RESUMO

We previously showed that 5-ethynyl-(1-ß-D-ribofuranosyl)imidazole-4-carboxamide (1; EICAR) is a potent anti-dengue virus (DENV) compound but is cytotoxic to some cell lines, while its 4-thio derivative, 5-ethynyl-(4-thio-1-ß-D-ribofuranosyl)imidazole-4-carboxamide (2; 4'-thioEICAR), has less cytotoxicity but also less anti-DENV activity. Based on the hypothesis that the lower anti-DENV activity of 2 is due to reduced susceptibility to phosphorylation by cellular kinase(s), we investigated whether a monophosphate prodrug of 2 can improve its activity. Here, we first prepared two types of prodrug of 1, which revealed that the S-acyl-2-thioethyl (SATE) prodrug had stronger anti-DENV activity than the aryloxyphosphoramidate (so-called ProTide) prodrug. Based on these findings, we next prepared the SATE prodrug of 4'-thioEICAR 18. As expected, the resulting 18 showed potent anti-DENV activity, which was comparable to that of 1; however, its cytotoxicity was also increased relative to 2. Our findings suggest that prodrugs of 4'-thioribonucleoside derivatives such as EICAR (1) represent an effective approach to developing potent biologically active compounds; however, the balance between antiviral activity and cytotoxicity remains to be addressed.


Assuntos
Antivirais , Vírus da Dengue/efeitos dos fármacos , Imidazóis/farmacologia , Pró-Fármacos , Antivirais/farmacologia , Linhagem Celular , Nucleotídeos/farmacologia , Pró-Fármacos/farmacologia , Replicação Viral
10.
Artigo em Inglês | MEDLINE | ID: mdl-31994434

RESUMO

Furanopyrimidine (FPy) and 2,6-diamino-3-deazapurine (DC3Pu) nucleosides with the ability to interact in DDD and AAA H-bonding patterns, respectively, were prepared. The N-1 pKa value of the DC3Pu nucleoside was estimated to be 6.4, which is due to the lack of a nitrogen atom at the 3-position, suggesting that DC3Pu acts as a base interacting in a DDD H-bonding pattern under near physiological conditions. As DC3Pu and FPy are expected to form a thermally stable DDD:AAA type of base pair in an oligodeoxynucleotide (ODN) duplex, they were incorporated into ODNs, and the Tm value of the ODN duplex was determined. However, the ODN duplex containing a DC3Pu:FPy pair has a lower thermal stability than that containing a G:C pair does, although its thermal stability is equal to that of an ODN duplex with an A:T pair even under acidic conditions.


Assuntos
Nucleosídeos , Oligonucleotídeos , Pareamento de Bases , Nitrogênio , Oligodesoxirribonucleotídeos
11.
Curr Protoc ; 1(11): e297, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34837670

RESUMO

A convenient synthetic method for preparing 3-deazapurine nucleosides (3-deazainosine, 3-deazaadenosine, and 3-deazaguanosine) from inosine via a 5-ethynyl-1-ß-D-ribofuranosylimidazole-4-carboxamide (EICAR) derivative, which is a key intermediate, is described. A large-scale synthesis of an EICAR derivative starting from inosine was achieved in six steps via dinitrophenylation at the N1 position followed by ring opening, iodination of the resulting 5-amino group, and a palladium-catalyzed cross-coupling reaction. The resulting EICAR derivative was then converted into 3-deazainosine, 3-deazaadenosine, and 3-deazaguanosine. This route enabled us to synthesize 3-deazapurine nucleosides conveniently in good yields. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of 5-ethynyl-1-ß-D-ribofuranosylimidazole-4-carboxamide (EICAR) derivative 6 Basic Protocol 2: Preparation of 3-deazapurine nucleosides 8, 11, and 14.


Assuntos
Inosina , Nucleosídeos , Guanosina/análogos & derivados , Tubercidina
12.
RSC Med Chem ; 12(9): 1519-1524, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34671735

RESUMO

Cyclic dinucleotides (CDNs) are secondary messengers composed of two purine nucleotides linked via two phosphodiester linkages: c-di-GMP, c-di-AMP, 3',3'-cGAMP, and 2',3'-cGAMP. CDNs activate the stimulator of interferon genes (STING) and trigger immune responses in mammalian species. CDNs are thus fascinating molecules as drug candidates, and chemically stable CDN analogues that act as STING agonists are highly desired at present. We herein report the practical synthesis of 4'-thiomodified c-di-AMP analogues, which have sulfur atoms at the 4'-position on the furanose ring instead of oxygen atoms, using simple phosphoramidite chemistry. The resulting 4'-thiomodified c-di-AMP analogues acted as potent STING agonists with long-term activity. Our results show that replacing O4' on CDNs with sulfur can lead to enhanced immunostimulatory effects via STING activation.

13.
iScience ; 24(10): 103120, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34541466

RESUMO

Newly emerging or re-emerging viral infections continue to cause significant morbidity and mortality every year worldwide, resulting in serious effects on both health and the global economy. Despite significant drug discovery research against dengue viruses (DENVs) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), no fully effective and specific drugs directed against these viruses have been discovered. Here, we examined the anti-DENV activity of tubercidin derivatives from a compound library from Hokkaido University and demonstrated that 5-hydroxymethyltubercidin (HMTU, HUP1108) possessed both potent anti-flavivirus and anti-coronavirus activities at submicromolar levels without significant cytotoxicity. Furthermore, HMTU inhibited viral RNA replication and specifically inhibited replication at the late stages of the SARS-CoV-2 infection process. Finally, we demonstrated that HMTU 5'-triphosphate inhibited RNA extension catalyzed by the viral RNA-dependent RNA polymerase. Our findings suggest that HMTU has the potential of serving as a lead compound for the development of a broad spectrum of antiviral agents, including SARS-CoV-2.

14.
Org Lett ; 23(10): 4062-4066, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33938754

RESUMO

To develop a new nucleoside analogue applicable to oligonucleotide therapeutics, we designed a 4'-thio analogue of an LNA/BNA monomer. Synthesis of 4'-hydroxymethyl-4'-thioribonucleoside was achieved by a tandem ring-contraction-aldol reaction of a 5-thiopyranose derivative and the subsequent Pummerer-type thioglycosylation reaction of the corresponding sulfoxide. Treatment of 4'-hydroxymethyl-4'-thiopyrimidine nucleosides with diphenyl carbonate in the presence of catalytic NaHCO3 gave the desired 4'-thioLNA/BNA monomers, which were introduced into oligonucleotides.

15.
Yakugaku Zasshi ; 140(10): 1259-1268, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32999205

RESUMO

RNA interference (RNAi) is the standard method of suppressing gene expression because of its target specificity, potency, and ability to silence the expression of virtually any gene. Using 21-mer small interfering RNA (siRNA) is the general approach for inducing RNAi, as siRNA can be easily prepared using a DNA/RNA synthesizer. Synthetic siRNA can be chemically modified to increase the potency of RNAi activity and abrogate innate immune stimulation. However, designing chemically modified siRNA requires substantial experimentation. A practical method for understanding the interaction of siRNA and RNAi-related proteins and how modifications affect RNA-protein interactions is therefore needed. Plasmid DNA (pDNA) expressing short hairpin RNA (shRNA) can also be used to induce RNAi. pDNA produces numerous shRNAs that induce RNAi with potent and longterm RNAi activity, even if only one pDNA molecule is delivered to the nucleus. However, this approach has some drawbacks with regard to its therapeutic application, such as a low pDNA transfection efficiency due to its huge molecular size and innate immune responses induced by extra genes, such as CpG motifs. To overcome these issues with RNAi inducers (siRNA and pDNA), our group developed some chemical approaches using chemically modified oligonucleotides. This article focuses on our two original approaches. The first involves the groove modification of siRNA duplexes to understand siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes, while the second involves the generation of RNAi medicine using chemically modified DNA, known as an intelligent shRNA expression device (iRed).


Assuntos
Desenvolvimento de Medicamentos/métodos , Interferência de RNA , RNA Interferente Pequeno/síntese química , DNA , Imunidade Inata , Oligonucleotídeos/química , Domínios e Motivos de Interação entre Proteínas , RNA Interferente Pequeno/química , Terapêutica com RNAi , Tubercidina/química
16.
Molecules ; 25(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283709

RESUMO

BACKGROUND: We have recently introduced an intelligent RNA expression device (iRed), comprising the minimum essential components needed to transcribe short hairpin RNA (shRNA) in cells. Use of iRed efficiently produced shRNA molecules after transfection into cells and alleviated the innate immune stimulation following intravenous injection. METHODS: To study the usefulness of iRed for local injection, the engineered iRed encoding luciferase shRNA (Luc iRed), complexed with cationic liposomes (Luc iRed/liposome-complexes), was intrapleurally injected into an orthotopic mesothelioma mouse model. RESULTS: Luc iRed/liposome-complexes markedly suppressed the expression of a luciferase marker gene in pleurally disseminated mesothelioma cells. The suppressive efficiency was correlated with the expression level of shRNA within the mesothelioma cells. In addition, intrapleural injection of iRed/liposome-complexes did not induce IL-6 production in the pleural space and consequently in the blood compartment, although plasmid DNA (pDNA) or dsDNA (the natural construct for iRed) in the formulation did. CONCLUSION: Local delivery of iRed could augment the in vivo gene silencing effect without eliciting pronounced innate immune stimulation. Our results might hold promise for widespread utilization of iRed as an RNAi-based therapeutic for intracelial malignant cancers.


Assuntos
Inativação Gênica , Imunomodulação/genética , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Interferência de RNA , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Humanos , Imunidade Inata/genética , Lipossomos , Camundongos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Bioorg Med Chem ; 27(11): 2181-2186, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31003866

RESUMO

In this work, we developed imidazole nucleoside derivatives with anti-dengue virus (DENV) activity was examined. First, compounds in a nucleosides library were screened to find lead compounds which inhibit replication of DENV. As a result, 5-ethynyl-(1-ß-d-ribofuranosyl)imidazole-4-carboxamide (1; EICAR) and its 4-carbonitrile derivative EICNR (2) were selected as promising antiviral compounds. However, both of them also exhibited cytotoxicity. In order to develop an effective and less toxic compound, 4'-thio and 4'-seleno derivatives of EICAR and EICNR 3-6 were prepared. The resulting 4'-thioEICAR and 4'-thioEICNR showed inhibitory effect on DENV replication without cytotoxicity as potent as ribavirin, a positive control.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Imidazóis/farmacologia , Ribonucleosídeos/farmacologia , Animais , Antivirais/síntese química , Linhagem Celular , Imidazóis/síntese química , Mesocricetus , Testes de Sensibilidade Microbiana , Ribonucleosídeos/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
18.
Antiviral Res ; 154: 1-9, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29601893

RESUMO

Rabies remains an invariably fatal neurological disease despite the availability of a preventive vaccination and post-exposure prophylaxis that must be immediately administered to the exposed individual before symptom onset. There is no effective medication for treatment during the symptomatic phase. Ribavirin, a guanine nucleoside analog, is a potent inhibitor of rabies virus (RABV) replication in vitro but lacks clinical efficacy. Therefore, we attempted to identify potential ribavirin analogs with comparable or superior anti-RABV activity. Antiviral activity and cytotoxicity of the compounds were initially examined in human neuroblastoma cells. Among the tested compounds, two exhibited a 5- to 27-fold higher anti-RABV activity than ribavirin. Examination of the anti-RABV mechanisms of action of the compounds using time-of-addition and minigenome assays revealed that they inhibited viral genome replication and transcription. Addition of exogenous guanosine to RABV-infected cells diminished the antiviral activity of the compounds, suggesting that they are involved in guanosine triphosphate (GTP) pool depletion by inhibiting inosine monophosphate dehydrogenase (IMPDH). Taken together, our findings underline the potency of nucleoside analogs as a class of antiviral compounds for the development of novel agents against RABV.


Assuntos
Antivirais/farmacologia , Nucleosídeos/farmacologia , Vírus da Raiva/efeitos dos fármacos , Ribavirina/farmacologia , Animais , Linhagem Celular , Descoberta de Drogas , Humanos , Camundongos , Raiva/tratamento farmacológico , Raiva/prevenção & controle , Ribavirina/química , Replicação Viral/efeitos dos fármacos
19.
Chem Pharm Bull (Tokyo) ; 66(2): 132-138, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29386463

RESUMO

In this review, we have summarized the research effort into the development of unnatural base pairs beyond standard Watson-Crick (WC) base pairs for synthetic biology. Prior to introducing our research results, we present investigations by four outstanding groups in the field. Their research results demonstrate the importance of shape complementarity and stacking ability as well as hydrogen-bonding (H-bonding) patterns for unnatural base pairs. On the basis of this research background, we developed unnatural base pairs consisting of imidazo[5',4':4.5]pyrido[2,3-d]pyrimidines and 1,8-naphthyridines, i.e., Im : Na pairs. Since Im bases are recognized as ring-expanded purines and Na bases are recognized as ring-expanded pyrimidines, Im : Na pairs are expected to satisfy the criteria of shape complementarity and enhanced stacking ability. In addition, these pairs have four non-canonical H-bonds. Because of these preferable properties, ImNN : NaOO, one of the Im : Na pairs, is recognized as a complementary base pair in not only single nucleotide insertion, but also the PCR.


Assuntos
Pareamento de Bases/fisiologia , Biologia Sintética/métodos , Ligação de Hidrogênio , Naftiridinas/química , Fenômenos Físicos , Purinas/química , Pirimidinas/química
20.
Bioorg Med Chem ; 25(21): 5962-5967, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28986115

RESUMO

A convenient strategy to purify oligonucleotides (ONs) synthesized by solid phase synthesis on an automatic DNA/RNA synthesizer was described. By attaching a photocleavable azide linker as the last phosphoramidite unit in the ON synthesis, only the desired full-length sequence was 'caught' on a controlled pore glass (CPG) resin possessing an aza-dimethoxycyclooctyne (DIBAC) derivative. Washing the resulting CPG resin to remove all unbounded species, the subsequent photoirradiation allowed the pure ONs to be 'released' without leaving any chemical modifications on native ON structure or chemical reagents from the solid phase ON synthesis.


Assuntos
Alcinos/química , Azidas/química , Oligonucleotídeos/isolamento & purificação , Raios Ultravioleta , Cromatografia Líquida de Alta Pressão , Reação de Cicloadição , Estrutura Molecular , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...