Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 854: 158541, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36075426

RESUMO

The lowland tropical triple-cropping rice system has unique characteristics that affect the hydrological, nutrient, and atmospheric environments. To better understand the ecosystem carbon and water dynamics of a triple-cropping rice paddy from the perspective of sustainability, ecosystem-level CO2 flux and ecosystem water use efficiency (eWUE) were observed using eddy covariance over 2 years (2016-2018) at an experimental field site in southern India, and gross primary production (GPP) and ecosystem respiration (RE) were derived using the flux partitioning technique. Results showed that among the three crop seasons per year, GPP and RE were higher (887.2 and 570.2 g C m-2, respectively) in Thaladi (October-January: wet season) than in Kuruvai (June-September: dry season; 773.4 and 568.9 g C m-2, respectively) and summer rice (February-May; 694.0 and 499.7 g C m-2, respectively) owing to the longer growing season. Triple-cropping meant that the quasi-annual GPP of 2598 g C m-2 (i.e., the total value for the three consecutive seasons, including the corresponding fallow periods) was much greater than the quasi-annual RE of 1974 g C m-2. Consequently, the net ecosystem production value was positive (624 g C m-2). Evapotranspiration was also high on the annual scale (1681 mm); that is, 48 % greater than mean annual precipitation (1139 mm). Analysis revealed that Thaladi had higher eWUE (2.21 g C (kg H2O)-1) than that of Kuruvai (1.46 g C (kg H2O)-1) and summer rice (1.57 g C (kg H2O)-1) owing to decreased water loss in cloudy weather. Intense solar radiation is generally recognized as advantageous for crop growth in most regions, but not for Kuruvai and summer rice, when too strong solar radiation increases loss of water unused for photosynthesis. The findings indicate that water-saving techniques should be targeted on the Kuruvai and summer rice seasons.

2.
Appl Opt ; 59(26): 8014-8022, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32976477

RESUMO

Aerosol optical properties are measured near the surface level using sampling instruments and a near-horizontal lidar. The values of the aerosol extinction coefficient inside the instruments are derived from nephelometer and aethalometer data, while the ambient values are measured from the lidar. The information on aerosol size distribution from optical particle counters is used to simulate extinction coefficients using the Mie scattering theory, with corrections on the humidity growth of hygroscopic particles. By applying this method to the continuous data obtained from November to December 2018 at Chiba, Japan, we elucidate the temporal variations of near-surface aerosol properties, including the complex refractive index, single scattering albedo, and Angstrom exponent. The results indicate how aerosol particles change their properties between the dry, instrumental conditions and relatively humid setting of the ambient atmosphere.

3.
Appl Opt ; 46(29): 7196-201, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17932529

RESUMO

The Improved Limb Atmospheric Spectrometer-II (ILAS-II) is a satellite-borne solar occultation sensor onboard the Advanced Earth Observing Satellite-II (ADEOS-II). The ILAS-II succeeded the ILAS. The ILAS-II used four grating spectrometers to observe vertical profiles of gas volume mixing ratios of trace constituents and was also equipped with a Sun-edge sensor to determine tangent heights geometrically with high precision. The accuracy of gas volume mixing ratios depends on the accuracy of the tangent height determination. The combination method is a tangent height registration method that was developed to give appropriate tangent heights for the ILAS-II Version 1.4 data retrieval algorithm. This study describes the method used in the ILAS-II Version 1.4 retrieval algorithm to register tangent heights. The root-sum-square total random error is estimated to be 30 m, and the total systematic error is 180 m at an altitude of 30 km. The influence of the tangent height errors on the vertical profiles of gas volume mixing ratios in ILAS-II Version 1.4 is estimated by using the relative difference. The relative difference for each species is within 7% (20%) for an altitude shift of +/-100 m(+/-300 m).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...