Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(4): 113981, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520688

RESUMO

Cholera toxin (CT), a bacterial exotoxin composed of one A subunit (CTA) and five B subunits (CTB), functions as an immune adjuvant. CTB can induce production of interleukin-1ß (IL-1ß), a proinflammatory cytokine, in synergy with a lipopolysaccharide (LPS), from resident peritoneal macrophages (RPMs) through the pyrin and NLRP3 inflammasomes. However, how CTB or CT activates these inflammasomes in the macrophages has been unclear. Here, we clarify the roles of inositol-requiring enzyme 1 alpha (IRE1α), an endoplasmic reticulum (ER) stress sensor, in CT-induced IL-1ß production in RPMs. In RPMs, CTB is incorporated into the ER and induces ER stress responses, depending on GM1, a cell membrane ganglioside. IRE1α-deficient RPMs show a significant impairment of CT- or CTB-induced IL-1ß production, indicating that IRE1α is required for CT- or CTB-induced IL-1ß production in RPMs. This study demonstrates the critical roles of IRE1α in activation of both NLRP3 and pyrin inflammasomes in tissue-resident macrophages.


Assuntos
Toxina da Cólera , Estresse do Retículo Endoplasmático , Endorribonucleases , Interleucina-1beta , Proteínas Serina-Treonina Quinases , Interleucina-1beta/metabolismo , Animais , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Toxina da Cólera/farmacologia , Toxina da Cólera/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Lipopolissacarídeos/farmacologia , Retículo Endoplasmático/metabolismo
2.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37462944

RESUMO

Loss-of-function mutations in the lysosomal nucleoside transporter SLC29A3 cause lysosomal nucleoside storage and histiocytosis: phagocyte accumulation in multiple organs. However, little is known about the mechanism by which lysosomal nucleoside storage drives histiocytosis. Herein, histiocytosis in Slc29a3-/- mice was shown to depend on Toll-like receptor 7 (TLR7), which senses a combination of nucleosides and oligoribonucleotides (ORNs). TLR7 increased phagocyte numbers by driving the proliferation of Ly6Chi immature monocytes and their maturation into Ly6Clow phagocytes in Slc29a3-/- mice. Downstream of TLR7, FcRγ and DAP10 were required for monocyte proliferation. Histiocytosis is accompanied by inflammation in SLC29A3 disorders. However, TLR7 in nucleoside-laden splenic monocytes failed to activate inflammatory responses. Enhanced production of proinflammatory cytokines was observed only after stimulation with ssRNAs, which would increase lysosomal ORNs. Patient-derived monocytes harboring the G208R SLC29A3 mutation showed enhanced survival and proliferation in a TLR8-antagonist-sensitive manner. These results demonstrated that TLR7/8 responses to lysosomal nucleoside stress drive SLC29A3 disorders.


Assuntos
Histiocitose , Receptor 7 Toll-Like , Animais , Camundongos , Citocinas/genética , Histiocitose/genética , Mutação/genética , Nucleosídeos , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
3.
FEBS Lett ; 597(9): 1246-1260, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002715

RESUMO

Sa15-21, a monoclonal antibody against mouse Toll-like receptor (TLR) 4, can protect mice from lipopolysaccharide (LPS)/D-galactosamine-induced acute lethal hepatitis. Herein, we investigated the molecular mechanisms underlying Sa15-21-mediated regulation of TLR4 signaling in macrophages. Results showed that Sa15-21 enhanced the production of proinflammatory cytokines and attenuated the production of anti-inflammatory cytokines in LPS-stimulated macrophages. Western blotting analysis revealed that Sa15-21 pretreatment had no effect on NF-κB and MAPK signaling in LPS-stimulated macrophages; however, Sa15-21 treatment alone led to a weak and delayed activation of NF-κB and MAPK signaling without any effect on proinflammatory cytokine production. By contrast, Sa15-21 failed to induce the activation of interferon regulatory factor 3. Taken together, our results indicate that Sa15-21 sensitizes macrophages to facilitate the inflammatory response via TLR signaling.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Macrófagos , Citocinas , Anticorpos Monoclonais/farmacologia
4.
Front Immunol ; 13: 941931, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812450

RESUMO

Toll-like receptors (TLRs) respond to pathogen constituents, such as microbial lipids and nucleic acids (NAs). TLRs recognize NAs in endosomal compartments. Structural and functional studies have shown that recognition of NAs by TLRs depends on NA processing by RNases and DNases. DNase II-dependent DNA degradation is required for TLR9 responses to single-stranded DNAs, whereas RNase T2-dependent RNA degradation enables TLR7 and TLR8 to respond to nucleosides and oligoribonucleotides. In contrast, RNases and DNases negatively regulate TLR responses by degrading their ligands. RNase T2 negatively regulates TLR3 responses to degrading the TLR3 ligand double-stranded RNAs. Therefore, NA metabolism in the endosomal compartments affects the endosomal TLR responses. Dysregulation of NA metabolism in the endosomal compartment drives the TLR-dependent pathologies in human diseases.


Assuntos
Ácidos Nucleicos , Endossomos/metabolismo , Humanos , Ligantes , Ácidos Nucleicos/metabolismo , RNA de Cadeia Dupla/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo
5.
Int Immunol ; 33(12): 835-840, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34223897

RESUMO

Nucleic-acid (NA)-sensing Toll-like receptors (TLRs) are synthesized in the endoplasmic reticulum and mature with chaperones, such as Unc93B1 and the protein associated with TLR4 A (PRAT4A)-gp96 complex. The TLR-Unc93B1 complexes move to the endosomal compartment, where proteases such as cathepsins activate their responsiveness through proteolytic cleavage of the extracellular domain of TLRs. Without proteolytic cleavage, ligand-dependent dimerization of NA-sensing TLRs is prevented by the uncleaved loop in the extracellular domains. Additionally, the association of Unc93B1 inhibits ligand-dependent dimerization of TLR3 and TLR9 and, therefore, Unc93B1 is released from these TLRs before dimerization. Ligand-activated NA-sensing TLRs induce the production of pro-inflammatory cytokines and act on the endosomal compartment to initiate anterograde trafficking to the cell periphery for type I interferon production. In the endosomal compartment, DNA and RNA are degraded by DNases and RNases, respectively, generating degradation products. DNase 2A and RNase T2 generate ligands for TLR9 and TLR8, respectively. In this mechanism, DNases and RNases control innate immune responses to NAs in endosomal compartments. NA-sensing TLRs and the endosomal compartment work together to monitor environmental cues through endosomes and decide to launch innate immune responses.


Assuntos
Endossomos/imunologia , Ácidos Nucleicos/imunologia , Receptores Toll-Like/imunologia , Animais , Humanos
6.
Int Immunol ; 32(12): 785-798, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32840578

RESUMO

Toll-like receptors (TLRs) impact myeloid cell responsiveness to environmental cues such as pathogen components and metabolites. Although TLR protein expression in monocytes and tissue macrophages is thought to be optimized for microenvironments in each tissue, a comprehensive study has not been reported. We here examined protein expression of endogenous TLRs in tissue-resident myeloid cells. Neutrophils in peripheral blood, spleen, liver and lung expressed TLR2, TLR4 and TLR5 in all tissues. Ly6C+ MHC II‒ classical monocytes mature into Ly6C‒ MHC II+ monocyte-derived dendritic cells (moDCs) or Ly6C‒ MHC II‒ patrolling monocytes. These subsets were found in all the tissues studied. TLR2 and TLR4 were displayed on all of these subsets, regardless of location. In contrast, expression of endosomal TLRs did vary with tissues and subsets. moDCs expressed TLR9, but much less TLR7. In contrast, TLR7, not TLR3 or TLR9, was highly expressed in classical and patrolling monocytes. Tissue macrophages such as red pulp macrophages in the spleen, Kupffer cells in the liver, microglia in the brain, alveolar macrophages in the lung and adipose tissue macrophages all expressed TLR2, TLR4 and TLR3. TLR7 was also expressed in these tissue macrophages except Kupffer cells in the liver. TLR9 expression in tissue macrophages was much lower or hard to detect. These results suggest that expression of endosomal TLRs in myeloid cells is influenced by their differentiation status and tissue-specific microenvironments.


Assuntos
Endossomos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores Toll-Like/imunologia , Animais , Células Cultivadas , Camundongos , Receptores Toll-Like/genética
7.
J Leukoc Biol ; 106(4): 853-862, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219657

RESUMO

TLRs respond to a variety of microbial products and initiate defense responses against bacteria and viruses. A variety of pathogens invade into and control the endosomal compartment to survive in host cells. On the other hand, host cells deploy cell surface and endosomal TLRs to pathogen-containing vesicles to mount defense responses. The endosomal compartment is a site for pathogen-sensing. As TLR-dependent defense responses are accompanied with a shift to the anabolic state, TLR responses need to be under metabolic control. Cellular metabolic state is monitored by sensing lysosomal metabolites by the mammalian target of rapamycin complex 1 (mTORC1). Type I IFN production induced by endosomal TLRs requires mTORC1. Recent studies have demonstrated that the interaction between TLRs and mTORC1 depends on their anterograde movement to the cell periphery. In a nutrient-sufficient state, a molecular complex called Ragulator recruits and activates mTORC1 in lysosomes. In parallel, Ragulator allows the small GTPase Arl8b to drive lysosomes to the cell periphery. Nutrient-activated mTORC1 in peripheral lysosomes is constitutively associated with type I IFN signaling molecules such as TRAF3 and IKKα. On the other hand, TLR7 and TLR3 are activated in the endosomal compartment and induce trafficking of TLR-containing vesicles to the cell periphery in a manner dependent on Arl8b or another GTPase Rab7a, respectively. Lysosomal trafficking helps TLR7 and TLR3 to interact with nutrient-activated mTORC1 and type I IFN signaling molecules. The endosomal compartments serve as platforms where metabolic sensing machinery licenses TLRs to initiate type I IFN responses.


Assuntos
Endossomos/metabolismo , Imunidade Inata , Lisossomos/metabolismo , Animais , Adesão Celular , Citocinas/biossíntese , Humanos , Receptores Toll-Like/metabolismo
8.
Int Immunol ; 31(4): 225-237, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30753473

RESUMO

Toll-like receptor 7 (TLR7) and type I interferons (IFN-1) are essential for the development of systemic lupus erythematosus (SLE) models such as BXSB.Yaa and 2,6,10,14-tetramethyl-pentadecane (TMPD)-induced experimental lupus. However, the mechanism underlying the development of SLE remains undefined. We report a requirement for ADP-ribosylation factor-like 8b (Arl8b) for TLR7-dependent IFN-1 production in plasmacytoid dendritic cells (pDCs). We analyzed whether Arl8b plays a role in two SLE models by comparing wild-type and Arl8b-deficient Arl8b GeneTrap (Arl8bGt/Gt) mice. We found that BXSB.Yaa Arl8bGt/Gt mice showed none of the abnormalities characterized in BXSB.Yaa mice. TMPD treatment of Arl8bGt/Gt mice significantly inhibited the development of SLE. pDCs were required for TMPD-induced peritonitis. Our data demonstrate that Arl8b contributes to disease pathogenesis in two SLE models via IFN-1-dependent and -independent mechanisms and suggest that Arl8b is an attractive new target for therapeutic intervention in SLE.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Células Dendríticas/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Peritonite/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Modelos Animais de Doenças , Células Hep G2 , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/induzido quimicamente , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Picolinas , Receptor 7 Toll-Like/metabolismo
9.
Int Immunol ; 31(3): 167-173, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30535046

RESUMO

Toll-like receptor 8 (TLR8), a sensor for pathogen-derived single-stranded RNA (ssRNA), binds to uridine (Uri) and ssRNA to induce defense responses. We here show that cytidine (Cyd) with ssRNA also activated TLR8 in peripheral blood leukocytes (PBLs) and a myeloid cell line U937, but not in an embryonic kidney cell line 293T. Cyd deaminase (CDA), an enzyme highly expressed in leukocytes, deaminates Cyd to Uri. CDA expression enabled TLR8 response to Cyd and ssRNA in 293T cells. CDA deficiency and a CDA inhibitor both reduced TLR8 responses to Cyd and ssRNA in U937. The CDA inhibitor also reduced PBL response to Cyd and ssRNA. A Cyd analogue, azacytidine, is used for the therapy of myelodysplastic syndrome and acute myeloid leukemia. Azacytidine with ssRNA induced tumor necrosis factor-α expression in U937 and PBLs in a manner dependent on CDA and TLR8. These results suggest that CDA enables TLR8 activation by Cyd or its analogues with ssRNA through deaminating activity. Nucleoside metabolism might impact TLR8 responses in a variety of situations such as the treatment with nucleoside analogues.


Assuntos
Citidina Desaminase/metabolismo , Citidina/análogos & derivados , Citidina/metabolismo , Receptor 8 Toll-Like/metabolismo , Citidina/química , Humanos , Monócitos/metabolismo , Monócitos/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Células Tumorais Cultivadas , Células U937
10.
Nat Immunol ; 19(10): 1071-1082, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201994

RESUMO

TLR3 is a sensor of double-stranded RNA that is indispensable for defense against infection with herpes simplex virus type 1 (HSV-1) in the brain. We found here that TLR3 was required for innate immune responses to HSV-1 in neurons and astrocytes. During infection with HSV-1, TLR3 recruited the metabolic checkpoint kinase complex mTORC2, which led to the induction of chemokines and trafficking of TLR3 to the cell periphery. Such trafficking enabled the activation of molecules (including mTORC1) required for the induction of type I interferons. Intracranial infection of mice with HSV-1 was exacerbated by impairment of TLR3 responses with an inhibitor of mTOR and was significantly 'rescued' by potentiation of TLR3 responses with an agonistic antibody to TLR3. These results suggest that the TLR3-mTORC2 axis might be a therapeutic target through which to combat herpes simplex encephalitis.


Assuntos
Encefalite por Herpes Simples/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Herpesvirus Humano 1 , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células NIH 3T3
11.
Int Immunol ; 30(2): 43-51, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29452403

RESUMO

Nucleic acid (NA)-sensing Toll-like receptors (TLRs) respond to DNA/RNA derived from pathogens and dead cells. Structural studies have revealed a variety of molecular mechanisms by which TLRs sense NAs. Double-stranded RNA and single-stranded DNA directly bind to TLR3 and TLR9, respectively, whereas TLR7 and TLR8 bind to nucleosides and oligoribonucleotides derived from RNAs. Activation of ligand-bound TLRs is influenced by the functional status of TLRs. Proteolytic cleavage of NA-sensing TLRs enables ligand-dependent TLR dimerization. Trafficking of ligand-activated TLRs in endosomal and lysosomal compartments is requisite for production of type I interferons. Activation of NA-sensing TLRs is required for the control of viruses such as herpes simplex virus and endogenous retroviruses. On the other hand, excessive activation of NA-sensing TLRs drives disease progression in a variety of inflammatory diseases including systemic lupus erythematosus, heart failure, arthritis and non-alcoholic steatohepatitis. NA-sensing TLRs are targets for therapeutic intervention in these diseases. We here focus on our recent progresses in our understanding of NA-sensing TLRs.


Assuntos
Imunidade , Ácidos Nucleicos/imunologia , Ácidos Nucleicos/metabolismo , Receptores Toll-Like/metabolismo , Animais , DNA de Cadeia Simples/imunologia , DNA de Cadeia Simples/metabolismo , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Terapia de Alvo Molecular , Ligação Proteica , Multimerização Proteica , Transporte Proteico , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Receptores Toll-Like/química
12.
Cell Immunol ; 324: 33-41, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29269102

RESUMO

Tetraspanin membrane protein, epithelial membrane protein 3 (Emp3), is expressed in lymphoid tissues. Herein, we have examined the Emp3 in antigen presenting cell (APC) function in the CD8+ cytotoxic T lymphocytes (CTLs) induction. Emp3-overexpressing RAW264.7 macrophage cell line derived from BALB/c mice reduced anti-C57BL/6 alloreactive CTL induction, while Emp3-knockdown RAW264.7 enhanced it compared with parent RAW267.4. Emp3-overexpressing RAW264.7 inhibited, but Emp3-knockdown RAW264.7 augmented, CD8+ T cell proliferation, interferon-γ secretion, IL-2 consumption, and IL-2Rα expression on CD8+ T cells. The supernatant from co-culture with Emp3-overexpressing RAW264.7 contained higher amount of TNF-α, and TNF- α neutralization significantly restored all these inhibitions and the alloreactive CTL induction. These results suggest that Emp3 in allogeneic APCs possesses the inhibitory function of alloreactive CTL induction by downregulation of IL-2Rα expression CD8+ T cells via an increase in TNF-α production. This demonstrates a novel mechanism for regulating CTL induction by Emp3 in APCs through TNF-α production.


Assuntos
Glicoproteínas de Membrana/imunologia , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Fator de Necrose Tumoral alfa/biossíntese
13.
Nat Commun ; 8(1): 1592, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150602

RESUMO

Plasmacytoid dendritic cells (pDC) sense viral RNA through toll-like receptor 7 (TLR7), form self-adhesive pDC-pDC clusters, and produce type I interferons. This cell adhesion enhances type I interferon production, but little is known about the underlying mechanisms. Here we show that MyD88-dependent TLR7 signaling activates CD11a/CD18 integrin to induce microtubule elongation. TLR7+ lysosomes then become linked with these microtubules through the GTPase Arl8b and its effector SKIP/Plekhm2, resulting in perinuclear to peripheral relocalization of TLR7. The type I interferon signaling molecules TRAF3, IKKα, and mTORC1 are constitutively associated in pDCs. TLR7 localizes to mTORC1 and induces association of TRAF3 with the upstream molecule TRAF6. Finally, type I interferons are secreted in the vicinity of cell-cell contacts between clustered pDCs. These results suggest that TLR7 needs to move to the cell periphery to induce robust type I interferon responses in pDCs.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Glicoproteínas de Membrana/imunologia , RNA Viral/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Células Cultivadas , Células Dendríticas/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Interferon Tipo I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microtúbulos/imunologia , Microtúbulos/metabolismo , Transdução de Sinais/imunologia , Fator 3 Associado a Receptor de TNF/imunologia , Fator 3 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
14.
Sci Rep ; 7(1): 13169, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030601

RESUMO

Wheat amylase/trypsin bi-functional inhibitors (ATIs) are protein stimulators of innate immune response, with a recently established role in promoting both gastrointestinal and extra-gastrointestinal inflammatory syndromes. These proteins have been reported to trigger downstream intestinal inflammation upon activation of TLR4, a member of the Toll-like family of proteins that activates signalling pathways and induces the expression of immune and pro-inflammatory genes. In this study, we demonstrated the ability of ATI to directly interact with TLR4 with nanomolar affinity, and we kinetically and structurally characterized the interaction between these macromolecules by means of a concerted approach based on surface plasmon resonance binding analyses and computational studies. On the strength of these results, we designed an oligopeptide capable of preventing the formation of the complex between ATI and the receptor.


Assuntos
Técnicas Biossensoriais , Proteínas de Plantas/metabolismo , Receptor 4 Toll-Like/metabolismo , Triticum/metabolismo , Inibidores da Tripsina/metabolismo , Ligação Proteica , Ressonância de Plasmônio de Superfície
15.
Glycobiology ; 27(11): 1006-1015, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973141

RESUMO

Core fucosylation, a posttranslational modification of N-glycans, modifies several growth factor receptors and impacts on their ligand binding affinity. Core-fucose-deficient mice generated by ablating the α1,6 fucosyltransferase enzyme, Fut8, exhibit severe pulmonary emphysema, partly due to impaired macrophage function, similar to aged Toll-like receptor 4 (Tlr4)-deficient mice. We therefore suspect that a lack of core fucose affects the TLR4-dependent signaling pathway. Indeed, upon lipopolysaccharide stimulation, Fut8-deficient mouse embryonic fibroblasts (MEFs) produced similar levels of interleukin-6 but markedly reduced levels of interferon-ß (IFN-ß) compared with wild-type MEFs. Lectin blot analysis of the TLR4 signaling complex revealed that core fucosylation was specifically found on CD14. Even though similar levels of TLR4/myeloid differentiation factor 2 (MD2) activation and dimerization were observed in Fut8-deficient cells after lipopolysaccharide stimulation, internalization of TLR4 and CD14 was significantly impaired. Given that internalized TLR4/MD2 induces IFN-ß production, impaired IFN-ß production in Fut8-deficient cells is ascribed to impaired TLR4/MD2 internalization. These data show for the first time that glycosylation critically regulates TLR4 signaling.


Assuntos
Fucose/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Células HEK293 , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
Sci Rep ; 7: 44042, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266597

RESUMO

Toll-like Receptor 9 (TLR9) is an innate immune receptor recognizing microbial DNA. TLR9 is also activated by self-derived DNA, such as mitochondrial DNA, in a variety of inflammatory diseases. We show here that TLR9 activation in vivo is controlled by an anti-TLR9 monoclonal Ab (mAb). A newly established mAb, named NaR9, clearly detects endogenous TLR9 expressed in primary immune cells. The mAb inhibited TLR9-dependent cytokine production in vitro by bone marrow-derived macrophages and conventional dendritic cells. Furthermore, NaR9 treatment rescued mice from fulminant hepatitis caused by administering the TLR9 ligand CpGB and D-(+)-galactosamine. The production of proinflammatory cytokines induced by CpGB and D-(+)-galactosamine was significantly impaired by the mAb. These results suggest that a mAb is a promising tool for therapeutic intervention in TLR9-dependent inflammatory diseases.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Citocinas/imunologia , DNA/imunologia , Substâncias Protetoras/administração & dosagem , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Modelos Animais de Doenças , Endossomos/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/imunologia , Lisossomos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
17.
J Immunol ; 194(11): 5426-36, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917084

RESUMO

TLRs are distributed in their characteristic cellular or subcellular compartments to efficiently recognize specific ligands and to initiate intracellular signaling. Whereas TLRs recognizing pathogen-associated lipids or proteins are localized to the cell surface, nucleic acid-sensing TLRs are expressed in endosomes and lysosomes. Several endoplasmic reticulum (ER)-resident proteins are known to regulate the trafficking of TLRs to the specific cellular compartments, thus playing important roles in the initiation of innate immune responses. In this study, we show that an ER-resident protein, Nogo-B (or RTN4-B), is necessary for immune responses triggered by nucleic acid-sensing TLRs, and that a newly identified Nogo-B-binding protein (glucosyltransferases, Rab-like GTPase activators and myotubularins [GRAM] domain containing 4 [GRAMD4]) negatively regulates the responses. Production of inflammatory cytokines in vitro by macrophages stimulated with CpG-B oligonucleotides or polyinosinic:polycytidylic acid was attenuated in the absence of Nogo-B, which was also confirmed in serum samples from Nogo-deficient mice injected with polyinosinic:polycytidylic acid. Although a deficiency of Nogo-B did not change the incorporation or delivery of CpG to endosomes, the localization of TLR9 to endolysosomes was found to be impaired. We identified GRAMD4 as a downmodulator for TLR9 response with a Nogo-B binding ability in ER, because our knockdown and overexpression experiments indicated that GRAMD4 suppresses the TLR9 response and knockdown of Gramd4 strongly enhanced the response in the absence of Nogo-B. Our findings indicate a critical role of Nogo-B and GRAMD4 in trafficking of TLR9.


Assuntos
Endossomos/metabolismo , Imunidade Inata/imunologia , Proteínas Mitocondriais/metabolismo , Proteínas da Mielina/metabolismo , Receptor Toll-Like 9/imunologia , Animais , Linhagem Celular , Ilhas de CpG/genética , Citocinas/biossíntese , Retículo Endoplasmático/metabolismo , Endossomos/imunologia , Células HEK293 , Humanos , Imunidade Inata/genética , Macrófagos/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas da Mielina/genética , Proteínas Nogo , Oligonucleotídeos/farmacologia , Poli I-C/farmacologia , Ligação Proteica , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais/imunologia
18.
Nat Commun ; 6: 6119, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25648980

RESUMO

Toll-like receptor 7 (TLR7) senses microbial-derived RNA but can also potentially respond to self-derived RNA. To prevent autoimmune responses, TLR7 is thought to localize in endolysosomes. Contrary to this view, we show here that TLR7 is present on the cell surface of immune cells and that TLR7 responses can be inhibited by an anti-TLR7 antibody. The anti-TLR7 antibody is internalized with TLR7 and accumulates in endolysosomes as an immune complex. TLR7 responses in dendritic cells, macrophages and B cells are all inhibited by the anti-TLR7 antibody. Furthermore, the anti-TLR7 antibody inhibits in vivo cytokine production induced by a TLR7 ligand. Spontaneous TLR7 activation in Unc93b1(D34A/D34A) mice causes lethal inflammation. Progressive inflammation such as splenomegaly, thrombocytopenia and chronic active hepatitis are ameliorated by anti-TLR7 antibody treatment. These results demonstrate that cell surface TLR7 is a promising target for therapeutic intervention in autoimmune diseases.

19.
Nat Commun ; 6: 5853, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600358

RESUMO

DNase II digests DNA in endolysosomes. In the absence of DNase II, undigested DNA activates cytoplasmic DNA-sensing pathways. Little is known, however, about the role of DNase II in endolysosomal DNA sensing by TLR9. Here we show that DNase II is required for TLR9. We test two types of TLR9 ligands, CpG-A and CpG-B, and show that only CpG-A response is impaired in DNase II-deficient dendritic cells (DCs). Enzymatically inactive DNase II mutants cannot rescue CpG-A responses. DNase II cleaves CpG-A from 20-mer to 11-12-mer. The 3'11-mer CpG-A fragment activates DNase II-deficient DCs. CpG-A shows higher co-localization with LAMP-2(+) lysosomes than CpG-B and induces DNase II localization in LAMP-2(+) lysosomes. Moreover, we demonstrate that DNase II is required for TLR9 activation by bacterial genomic DNA. Taken together, these results demonstrate that TLR9 responds to DNA fragments generated by DNase II.


Assuntos
DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Células Dendríticas/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos
20.
Int Immunol ; 27(2): 83-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25239130

RESUMO

Toll-like receptor 7 (TLR7) and TLR9 sense microbial single-stranded RNA (ssRNA) and ssDNA in endolysosomes. Nucleic acid (NA)-sensing in endolysosomes is thought to be important for avoiding TLR7/9 responses to self-derived NAs. Aberrant self-derived NA transportation to endolysosomes predisposes to autoimmune diseases. To restrict NA-sensing in endolysosomes, TLR7/9 trafficking is tightly controlled by a multiple transmembrane protein Unc93B1. In contrast to TLR7/9 trafficking, little is known about a mechanism underlying NA transportation. We here show that Mucolipin 1 (Mcoln1), a member of the transient receptor potential (TRP) cation channel gene family, has an important role in ssRNA trafficking into lysosomes. Mcoln1(-/-) dendritic cells (DCs) showed impaired TLR7 responses to ssRNA. A mucolipin agonist specifically enhanced TLR7 responses to ssRNAs. The channel activity of Mcoln1 is activated by a phospholipid phosphatidylinositol (3,5) bisphosphate (PtdIns(3,5)P2), which is generated by a class III lipid kinase PIKfyve. A PIKfyve inhibitor completely inhibited TLR7 responses to ssRNA in DCs. Confocal analyses showed that ssRNA transportation to lysosomes in DCs was impaired by PIKfyve inhibitor as well as by the lack of Mcoln1. Transportation of TLR9 ligands was also impaired by the PIKfyve inhibitor. These results demonstrate that the PtdIns(3,5)P2-Mcoln1 axis has an important role in ssRNA transportation into lysosomes in DCs.


Assuntos
Transporte Biológico Ativo/imunologia , Células Dendríticas/imunologia , Lisossomos/imunologia , Glicoproteínas de Membrana/imunologia , RNA/imunologia , Receptor 7 Toll-Like/imunologia , Canais de Potencial de Receptor Transitório/imunologia , Animais , Transporte Biológico Ativo/genética , Células Dendríticas/citologia , Lisossomos/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Camundongos , Camundongos Knockout , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/imunologia , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia , Canais de Potencial de Receptor Transitório/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...