Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 108: 103227, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34601382

RESUMO

RAD51 paralogs are key components of the homologous recombination (HR) machinery. Mouse mutants have been reported for four of the canonical RAD51 paralogs, and each of these mutants exhibits embryonic lethality, although at different gestational stages. However, the phenotype of mice deficient in the fifth RAD51 paralog, XRCC3, has not been reported. Here we report that Xrcc3 knockout mice exhibit midgestational lethality, with mild phenotypes beginning at about E8.25 but severe developmental abnormalities evident by E9.0-9.5. The most obvious phenotypes are small size and a failure of the embryo to turn to a fetal position. A knockin mutation at a key ATPase residue in the Walker A box results in embryonic lethality at a similar stage. Death of knockout mice can be delayed a few days for some embryos by homozygous or heterozygous Trp53 mutation, in keeping with an important role for XRCC3 in promoting genome integrity. Given that XRCC3 is a unique member of one of two RAD51 paralog complexes with RAD51C, these results demonstrate that both RAD51 paralog complexes are required for mouse development.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Rad51 Recombinase , Adenosina Trifosfatases/genética , Animais , Proteínas de Ligação a DNA/genética , Feminino , Camundongos , Gravidez , Rad51 Recombinase/genética
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1809): 20190562, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32829684

RESUMO

The mammalian preimplantation embryo is a highly tractable, self-organizing developmental system in which three cell types are consistently specified without the need for maternal factors or external signals. Studies in the mouse over the past decades have greatly improved our understanding of the cues that trigger symmetry breaking in the embryo, the transcription factors that control lineage specification and commitment, and the mechanical forces that drive morphogenesis and inform cell fate decisions. These studies have also uncovered how these multiple inputs are integrated to allocate the right number of cells to each lineage despite inherent biological noise, and as a response to perturbations. In this review, we summarize our current understanding of how these processes are coordinated to ensure a robust and precise developmental outcome during early mouse development. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.


Assuntos
Blastocisto/metabolismo , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Morfogênese , Fatores de Transcrição/metabolismo , Animais , Camundongos
3.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720894

RESUMO

Precise control and maintenance of population size is fundamental for organismal development and homeostasis. The three cell types of the mammalian blastocyst are generated in precise proportions over a short time, suggesting a mechanism to ensure a reproducible outcome. We developed a minimal mathematical model demonstrating growth factor signaling is sufficient to guarantee this robustness and which anticipates an embryo's response to perturbations in lineage composition. Addition of lineage-restricted cells both in vivo and in silico, causes a shift of the fate of progenitors away from the supernumerary cell type, while eliminating cells using laser ablation biases the specification of progenitors toward the targeted cell type. Finally, FGF4 couples fate decisions to lineage composition through changes in local growth factor concentration, providing a basis for the regulative abilities of the early mammalian embryo whereby fate decisions are coordinated at the population level to robustly generate tissues in the right proportions.


Assuntos
Blastocisto/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Embrião de Mamíferos/embriologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Camundongos , Modelos Biológicos , Transdução de Sinais
4.
Nature ; 569(7756): 361-367, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959515

RESUMO

Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points-before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior-posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories.


Assuntos
Endoderma/citologia , Endoderma/embriologia , Intestinos/citologia , Intestinos/embriologia , Análise de Célula Única , Animais , Blastocisto/citologia , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Feminino , Gastrulação , Masculino , Camundongos
5.
PLoS One ; 14(2): e0212109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735538

RESUMO

During preimplantation mouse development stages, emerging pluripotent epiblast (Epi) and extraembryonic primitive endoderm (PrE) cells are first distributed in the blastocyst in a "salt-and-pepper" manner before they segregate into separate layers. As a result of segregation, PrE cells become localised on the surface of the inner cell mass (ICM), and the Epi is enclosed by the PrE on one side and by the trophectoderm on the other. During later development, a subpopulation of PrE cells migrates away from the ICM and forms the parietal endoderm (PE), while cells remaining in contact with the Epi form the visceral endoderm (VE). Here, we asked: what are the mechanisms mediating Epi and PrE cell segregation and the subsequent VE vs PE specification? Differences in cell adhesion have been proposed; however, we demonstrate that the levels of plasma membrane-bound E-cadherin (CDH1, cadherin 1) in Epi and PrE cells only differ after the segregation of these lineages within the ICM. Moreover, manipulating E-cadherin levels did not affect lineage specification or segregation, thus failing to confirm its role during these processes. Rather, we report changes in E-cadherin localisation during later PrE-to-PE transition which are accompanied by the presence of Vimentin and Twist, supporting the hypothesis that an epithelial-to-mesenchymal transition process occurs in the mouse peri-implantation blastocyst.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Caderinas/metabolismo , Endoderma/citologia , Células-Tronco Pluripotentes/citologia , Animais , Morte Celular , Linhagem da Célula , Membrana Celular/metabolismo , Implantação do Embrião , Transição Epitelial-Mesenquimal , Feminino , Camundongos , Transporte Proteico
6.
Biol Open ; 7(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530745

RESUMO

The GATA zinc-finger transcription factor GATA4 is expressed in a variety of tissues during mouse embryonic development and in adult organs. These include the primitive endoderm of the blastocyst, visceral endoderm of the early post-implantation embryo, as well as lateral plate mesoderm, developing heart, liver, lung and gonads. Here, we generate a novel Gata4 targeted allele used to generate both a Gata4H2B-GFP transcriptional reporter and a Gata4FLAG fusion protein to analyse dynamic expression domains. We demonstrate that the Gata4H2B-GFP transcriptional reporter faithfully recapitulates known sites of Gata4 mRNA expression and correlates with endogenous GATA4 protein levels. This reporter labels nuclei of Gata4 expressing cells and is suitable for time-lapse imaging and single cell analyses. As such, this Gata4H2B-GFP allele will be a useful tool for studying Gata4 expression and transcriptional regulation.This article has an associated First Person interview with the first author of the paper.

7.
Dev Biol ; 441(1): 104-126, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29964027

RESUMO

The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Organogênese/fisiologia , Animais , Rastreamento de Células/métodos , Embrião de Mamíferos/citologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Tecido Nervoso/genética
8.
Cell Rep ; 19(7): 1283-1293, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28514649

RESUMO

During mitosis, transcription is halted and many chromatin features are lost, posing a challenge for the continuity of cell identity, particularly in fast cycling stem cells, which constantly balance self-renewal with differentiation. Here we show that, in pluripotent stem cells, certain histone marks and stem cell regulators remain associated with specific genomic regions of mitotic chromatin, a phenomenon known as mitotic bookmarking. Enhancers of stem cell-related genes are bookmarked by both H3K27ac and the master regulators OCT4, SOX2, and KLF4, while promoters of housekeeping genes retain high levels of mitotic H3K27ac in a cell-type invariant manner. Temporal degradation of OCT4 during mitotic exit compromises its ability both to maintain and induce pluripotency, suggesting that its regulatory function partly depends on its bookmarking activity. Together, our data document a widespread yet specific bookmarking by histone modifications and transcription factors promoting faithful and efficient propagation of stemness after cell division.


Assuntos
Código das Histonas , Mitose , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Lisina/metabolismo , Proteólise
9.
Elife ; 62017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350296

RESUMO

Why does a totipotent state linger within the inner cell mass of mouse embryos?


Assuntos
Blastocisto , Embrião de Mamíferos , Animais , Camundongos , Transdução de Sinais
10.
Nat Commun ; 7: 13463, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27857135

RESUMO

Intercellular communication is essential to coordinate the behaviour of individual cells during organismal development. The preimplantation mammalian embryo is a paradigm of tissue self-organization and regulative development; however, the cellular basis of these regulative abilities has not been established. Here we use a quantitative image analysis pipeline to undertake a high-resolution, single-cell level analysis of lineage specification in the inner cell mass (ICM) of the mouse blastocyst. We show that a consistent ratio of epiblast and primitive endoderm lineages is achieved through incremental allocation of cells from a common progenitor pool, and that the lineage composition of the ICM is conserved regardless of its size. Furthermore, timed modulation of the FGF-MAPK pathway shows that individual progenitors commit to either fate asynchronously during blastocyst development. These data indicate that such incremental lineage allocation provides the basis for a tissue size control mechanism that ensures the generation of lineages of appropriate size.


Assuntos
Blastocisto/citologia , Blastocisto/fisiologia , Diferenciação Celular , Linhagem da Célula , Animais , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Camadas Germinativas , Camundongos , Transdução de Sinais
11.
J Vis Exp ; (108): 53654, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26967230

RESUMO

This protocol presents a method to perform quantitative, single-cell in situ analyses of protein expression to study lineage specification in mouse preimplantation embryos. The procedures necessary for embryo collection, immunofluorescence, imaging on a confocal microscope, and image segmentation and analysis are described. This method allows quantitation of the expression of multiple nuclear markers and the spatial (XYZ) coordinates of all cells in the embryo. It takes advantage of MINS, an image segmentation software tool specifically developed for the analysis of confocal images of preimplantation embryos and embryonic stem cell (ESC) colonies. MINS carries out unsupervised nuclear segmentation across the X, Y and Z dimensions, and produces information on cell position in three-dimensional space, as well as nuclear fluorescence levels for all channels with minimal user input. While this protocol has been optimized for the analysis of images of preimplantation stage mouse embryos, it can easily be adapted to the analysis of any other samples exhibiting a good signal-to-noise ratio and where high nuclear density poses a hurdle to image segmentation (e.g., expression analysis of embryonic stem cell (ESC) colonies, differentiating cells in culture, embryos of other species or stages, etc.).


Assuntos
Blastocisto/fisiologia , Células-Tronco Embrionárias/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo , Animais , Células-Tronco Embrionárias/metabolismo , Imunofluorescência , Camundongos , Microscopia/métodos , Proteômica/métodos , Software
12.
BMC Dev Biol ; 15: 38, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26498761

RESUMO

BACKGROUND: The GATA-binding factor 6 (Gata6) gene encodes a zinc finger transcription factor that often functions as a key regulator of lineage specification during development. It is the earliest known marker of the primitive endoderm lineage in the mammalian blastocyst. During gastrulation, GATA6 is expressed in early cardiac mesoderm and definitive endoderm progenitors, and is necessary for development of specific mesoderm and endoderm-derived organs including the heart, liver, and pancreas. Furthermore, reactivation or silencing of the Gata6 locus has been associated with certain types of cancer affecting endodermal organs. RESULTS: We have generated a Gata6(H2B-Venus) knock-in reporter mouse allele for the purpose of labeling GATA6-expressing cells with a bright nuclear-localized fluorescent marker that is suitable for live imaging at single-cell resolution. CONCLUSIONS: Expression of the Venus reporter was characterized starting from embryonic stem (ES) cells, through mouse embryos and adult animals. The Venus reporter was not expressed in ES cells, but was activated upon endoderm differentiation. Gata6(H2B-Venus/H2B-Venus) homozygous embryos did not express GATA6 protein and failed to specify the primitive endoderm in the blastocyst. However, null blastocysts continued to express high levels of Venus in the absence of GATA6 protein, suggesting that early Gata6 transcription is independent of GATA6 protein expression. At early post-implantation stages of embryonic development, there was a strong correlation of Venus with endogenous GATA6 protein in endoderm and mesoderm progenitors, then later in the heart, midgut, and hindgut. However, there were discrepancies in reporter versus endogenous protein expression in certain cells, such as the body wall and endocardium. During organogenesis, detection of Venus in specific organs recapitulated known sites of endogenous GATA6 expression, such as in the lung bud epithelium, liver, pancreas, gall bladder, stomach epithelium, and vascular endothelium. In adults, Venus was observed in the lungs, pancreas, liver, gall bladder, ovaries, uterus, bladder, skin, adrenal glands, small intestine and corpus region of the stomach. Overall, Venus fluorescent protein under regulatory control of the Gata6 locus was expressed at levels that were easily visualized directly and could endure live and time-lapse imaging techniques. Venus is co-expressed with endogenous GATA6 throughout development to adulthood, and should provide an invaluable tool for examining the status of the Gata6 locus during development, as well as its silencing or reactivation in cancer or other disease states.


Assuntos
Fator de Transcrição GATA6/genética , Técnicas Genéticas , Camundongos/genética , Análise de Célula Única , Animais , Embrião de Mamíferos/metabolismo , Fator de Transcrição GATA6/metabolismo , Genes Reporter , Camundongos/embriologia , Camundongos Knockout
13.
Semin Cell Dev Biol ; 47-48: 92-100, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26183190

RESUMO

Embryonic development is a complex and highly dynamic process during which individual cells interact with one another, adopt different identities and organize themselves in three-dimensional space to generate an entire organism. Recent technical developments in genomics and high-resolution quantitative imaging are making it possible to study cellular populations at single-cell resolution and begin to integrate different inputs, for example genetic, physical and chemical factors, that affect cell differentiation over spatial and temporal scales. The preimplantation mouse embryo allows the analysis of cell fate decisions in vivo with high spatiotemporal resolution. In this review we highlight how the application of live imaging and single-cell resolution analysis pipelines is providing an unprecedented level of insight on the processes that shape the earliest stages of mammalian development.


Assuntos
Blastocisto/fisiologia , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Comunicação Celular/genética , Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização in Situ Fluorescente/métodos , Camundongos , Reprodutibilidade dos Testes , Análise de Célula Única/métodos
14.
Stem Cell Reports ; 5(1): 97-110, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26095607

RESUMO

Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx3. Also, Tbx3 facilitates the cell fate transition from pluripotent cells to mesoderm progenitors by directly repressing Wnt pathway members required for differentiation. Wnt signaling regulates differentiation of mESCs into mesoderm progenitors and helps to maintain a naive pluripotent state. We show that Tbx3, a downstream target of Wnt signaling, fine tunes these divergent roles of Wnt signaling in mESCs. In conclusion, we identify a signaling-TF axis that controls the exit of mESCs from a self-renewing pluripotent state toward mesoderm differentiation.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias Murinas/citologia , Proteínas Repressoras/genética , Proteínas com Domínio T/genética , Animais , Linhagem da Célula/genética , Proteínas Cromossômicas não Histona , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/biossíntese , Proteínas com Domínio T/biossíntese , Via de Sinalização Wnt/genética
15.
Dev Cell ; 29(4): 454-67, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24835466

RESUMO

Cells of the inner cell mass (ICM) of the mouse blastocyst differentiate into the pluripotent epiblast or the primitive endoderm (PrE), marked by the transcription factors NANOG and GATA6, respectively. To investigate the mechanistic regulation of this process, we applied an unbiased, quantitative, single-cell-resolution image analysis pipeline to analyze embryos lacking or exhibiting reduced levels of GATA6. We find that Gata6 mutants exhibit a complete absence of PrE and demonstrate that GATA6 levels regulate the timing and speed of lineage commitment within the ICM. Furthermore, we show that GATA6 is necessary for PrE specification by FGF signaling and propose a model where interactions between NANOG, GATA6, and the FGF/ERK pathway determine ICM cell fate. This study provides a framework for quantitative analyses of mammalian embryos and establishes GATA6 as a nodal point in the gene regulatory network driving ICM lineage specification.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Endoderma/embriologia , Fator de Transcrição GATA6/metabolismo , Proteínas de Homeodomínio/biossíntese , Animais , Benzamidas/farmacologia , Diferenciação Celular , Linhagem da Célula , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Técnicas de Cultura Embrionária , Embrião de Mamíferos/metabolismo , Endoderma/citologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição GATA6/biossíntese , Fator de Transcrição GATA6/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/biossíntese , Proteínas de Homeodomínio/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteína Homeobox Nanog , Fatores de Transcrição SOXF/biossíntese
16.
PLoS One ; 9(4): e94730, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24733255

RESUMO

Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs) by injection of diploid (2n) ESCs into tetraploid (4n) blastocysts (ESC-derived mice). This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS) cells. However, the underlying mechanism(s) of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM). We designate these as type a (presence of ICM at blastocyst stage) or type b (absence of ICM). ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.


Assuntos
Massa Celular Interna do Blastocisto/metabolismo , Blastocisto/citologia , Clonagem de Organismos , Células-Tronco Embrionárias/citologia , Animais , Quimera , Diploide , Feminino , Cariotipagem , Masculino , Camundongos , Células-Tronco Pluripotentes/citologia , Tetraploidia
17.
Development ; 140(21): 4311-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24067354

RESUMO

During mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a 'salt and pepper' manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation. aPKC adopts a polarised localisation in PrE cells only after they reach the blastocyst cavity and form a mature epithelium, in a process that is dependent on FGF signalling. To assess the role of aPKC in PrE formation, we interfered with its activity using either chemical inhibition or RNAi knockdown. We show that inhibition of aPKC from the mid blastocyst stage not only prevents sorting of PrE precursors into a polarised monolayer but concomitantly affects the maturation of PrE precursors. Our results suggest that the processes of PrE and epiblast segregation, and cell fate progression are interdependent, and place aPKC as a central player in the segregation of epiblast and PrE progenitors in the mouse blastocyst.


Assuntos
Massa Celular Interna do Blastocisto/citologia , Blastocisto/enzimologia , Blastocisto/fisiologia , Células-Tronco Embrionárias/metabolismo , Endoderma/fisiologia , Proteína Quinase C/metabolismo , Animais , Linhagem da Célula/fisiologia , Polaridade Celular/fisiologia , Primers do DNA/genética , Endoderma/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Imunofluorescência , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Proteína Quinase C/genética , Interferência de RNA
18.
EMBO J ; 32(19): 2631-44, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23995398

RESUMO

DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high-resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island-associated origins always occur at positions of high-nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.


Assuntos
DNA/metabolismo , Nucleossomos/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Animais , Linhagem Celular , Cromatina , Ilhas de CpG , DNA/genética , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Sítio de Iniciação de Transcrição
19.
Reproduction ; 145(3): R65-80, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23221010

RESUMO

During mammalian preimplantation development, the fertilised egg gives rise to a group of pluripotent embryonic cells, the epiblast, and to the extraembryonic lineages that support the development of the foetus during subsequent phases of development. This preimplantation period not only accommodates the first cell fate decisions in a mammal's life but also the transition from a totipotent cell, the zygote, capable of producing any cell type in the animal, to cells with a restricted developmental potential. The cellular and molecular mechanisms governing the balance between developmental potential and lineage specification have intrigued developmental biologists for decades. The preimplantation mouse embryo offers an invaluable system to study cell differentiation as well as the emergence and maintenance of pluripotency in the embryo. Here we review the most recent findings on the mechanisms controlling these early cell fate decisions. The model that emerges from the current evidence indicates that cell differentiation in the preimplantation embryo depends on cellular interaction and intercellular communication. This strategy underlies the plasticity of the early mouse embryo and ensures the correct specification of the first mammalian cell lineages.


Assuntos
Blastocisto/fisiologia , Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Massa Celular Interna do Blastocisto/fisiologia , Comunicação Celular , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Morfogênese , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Development ; 139(1): 129-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22096072

RESUMO

Cell differentiation during pre-implantation mammalian development involves the formation of two extra-embryonic lineages: trophoblast and primitive endoderm (PrE). A subset of cells within the inner cell mass (ICM) of the blastocyst does not respond to differentiation signals and forms the pluripotent epiblast, which gives rise to all of the tissues in the adult body. How this group of cells is set aside remains unknown. Recent studies documented distinct sequential phases of marker expression during the segregation of epiblast and PrE within the ICM. However, the connection between marker expression and lineage commitment remains unclear. Using a fluorescent reporter for PrE, we investigated the plasticity of epiblast and PrE precursors. Our observations reveal that loss of plasticity does not coincide directly with lineage restriction of epiblast and PrE markers, but rather with exclusion of the pluripotency marker Oct4 from the PrE. We note that individual ICM cells can contribute to all three lineages of the blastocyst until peri-implantation. However, epiblast precursors exhibit less plasticity than precursors of PrE, probably owing to differences in responsiveness to extracellular signalling. We therefore propose that the early embryo environment restricts the fate choice of epiblast but not PrE precursors, thus ensuring the formation and preservation of the pluripotent foetal lineage.


Assuntos
Massa Celular Interna do Blastocisto/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Endoderma/fisiologia , Animais , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Fator 3 de Transcrição de Octâmero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...