Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 88(23): 234801, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12059368

RESUMO

We report the first measurements of z-dependent coherent optical transition radiation (COTR) due to electron-beam microbunching at high gains ( >10(4)) including saturation of a self-amplified spontaneous emission free-electron laser (FEL). In these experiments the fundamental wavelength was near 530 nm, and the COTR spectra exhibit the transition from simple spectra to complex spectra ( 5% spectral width) after saturation. The COTR intensity growth and angular distribution data are reported as well as the evidence for transverse spectral dependencies and an "effective" core of the beam being involved in microbunching.

2.
Phys Rev Lett ; 86(26 Pt 1): 5902-5, 2001 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-11415390

RESUMO

We report on an experimental investigation characterizing the output of a high-gain harmonic-generation (HGHG) free-electron laser (FEL) at saturation. A seed CO2 laser at a wavelength of 10.6 microm was used to generate amplified FEL output at 5.3 microm. Measurement of the frequency spectrum, pulse duration, and correlation length of the 5.3 microm output verified that the light is longitudinally coherent. Investigation of the electron energy distribution and output harmonic energies provides evidence for saturated HGHG FEL operation.

3.
Science ; 292(5524): 2037-41, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11358995

RESUMO

Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.

4.
Phys Rev Lett ; 85(5): 988-91, 2000 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-10991456

RESUMO

Experimental evidence for self-amplified spontaneous emission (SASE) at 530 nm is reported. The measurements were made at the low-energy undulator test line facility at the Advanced Photon Source, Argonne National Laboratory. The experimental setup and details of the experimental results are presented, as well as preliminary analysis. This experiment extends to shorter wavelengths the operational knowledge of a linac-based SASE free-electron laser and explicitly shows the predicted exponential growth in intensity of the optical pulse as a function of length along the undulator.

5.
Science ; 289(5481): 932-5, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10937992

RESUMO

A high-gain harmonic-generation free-electron laser is demonstrated. Our approach uses a laser-seeded free-electron laser to produce amplified, longitudinally coherent, Fourier transform-limited output at a harmonic of the seed laser. A seed carbon dioxide laser at a wavelength of 10.6 micrometers produced saturated, amplified free-electron laser output at the second-harmonic wavelength, 5.3 micrometers. The experiment verifies the theoretical foundation for the technique and prepares the way for the application of this technique in the vacuum ultraviolet region of the spectrum, with the ultimate goal of extending the approach to provide an intense, highly coherent source of hard x-rays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...