Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 533, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862876

RESUMO

Dragon fruit (Selenicereus undatus), known for its captivating appearance and remarkable nutritional profile, has garnered considerable attention in recent years. Despite its popularity, there's a dearth of research on optimal conditions for seed germination and early growth stages such as seedling shoot length, which are crucial for optimal crop yield. This study aims to bridge this gap by evaluating various growing media's performance on dragon fruit germination and early growth stages. Dragon fruit seeds were obtained from local markets in Pakistan and evaluated in five different growing media: cocopeat, peat moss, sand, vermiculite, and compost. Germination parameters were observed for 45 days, including seed germination percentage, mean germination time, and mean daily germination percentage, among others while early growth was monitored for 240 days. Statistical analysis was conducted using ANOVA and Tukey's HSD test. Significant differences were found among the growing media regarding germination percentage, mean germination time, and mean daily germination. Vermiculite exhibited the highest germination rate (93.33%), while compost showed the least (70%). Peat moss and sand media facilitated rapid germination, while compost showed slower rates. Stem length was significantly influenced by the growth media, with compost supporting the longest stems. Vermiculite emerged as the most effective medium for dragon fruit seed germination, while compost showed slower but steady growth. These findings provide valuable insights for optimizing dragon fruit cultivation, aiding commercial growers and enthusiasts in achieving higher yields and quality. Further research could explore additional factors influencing dragon fruit growth and development.


Assuntos
Meios de Cultura , Frutas , Germinação , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Plântula/crescimento & desenvolvimento , Cactaceae
2.
PLoS One ; 19(5): e0303264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758743

RESUMO

Saffron, the "golden spice" derived from Crocus sativus L., is renowned for its richness in secondary metabolites such as crocin and safranal, contributing to its unique properties. Facing challenges like decreasing global production, optimizing cultivation techniques becomes imperative for enhanced yields. Although the impact of factors like planting density, planting depth, spacing, and corm size on saffron growth has been studied, the interaction between corm size and planting depth remains underexplored. This study systematically investigates the interactive effects of corm size and planting depth on saffron growth and yield, providing evidence-based guidelines for optimizing cultivation. A factorial experiment, employing a completely randomized design, was conducted to assess the influence of corm size (05-10g, 10.1-15g, 15.1-20g) and planting depth (10cm, 15cm, 20cm) on saffron yield. Uniform-sized corms were obtained, and a suitable soil mixture was prepared for cultivation. Morphological and agronomic parameters were measured, and statistical analyses were performed using ANOVA and Tukey's HSD test. The study revealed that planting depth significantly affected saffron emergence. The corms sown under 15cm depth showed 100% emergence regardless of corm size (either 05-10g, 10.1-15g, 15.1-20g) followed by 10cm depth corms. Corm dry weight exhibited a complex interaction, where larger corms benefited from deeper planting, while intermediate-sized corms thrived at shallower depths. Similar patterns were observed in shoot fresh weight and dry weight. Specifically, the largest corm size (t3, 15.1-20g) produced the greatest fresh-weight biomass at the deepest planting depth of 20cm (T3), while intermediate-sized corms (t2, 10.1-15g) were superior at the shallowest 10cm depth (T1). The total plant biomass demonstrated that larger corms excelled in deeper planting, while intermediate-sized corms were optimal at moderate depths. This research highlights the intricate interplay between corm size and planting depth in influencing saffron growth. Larger corms generally promote higher biomass, but the interaction with planting depth is crucial. Understanding these dynamics can aid farmers in tailoring cultivation practices for optimal saffron yields. The study emphasizes the need for a coordinated approach to corm selection and depth placement, providing valuable insights for sustainable saffron production and economic growth.


Assuntos
Crocus , Crocus/crescimento & desenvolvimento , Crocus/metabolismo , Agricultura/métodos , Solo/química , Biomassa , Carotenoides/metabolismo
3.
ACS Omega ; 8(48): 45896-45905, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075807

RESUMO

Sesuvium sesuvioides was used to treat inflammation, arthritis, gout, and thyroid dysfunction. The current study evaluated the antihyperthyroidism effect of S. sesuvioides to consolidate its traditional use. High-performance liquid chromatography (HPLC) analysis of S. sesuvioides methanol extract revealed the presence of phenolics such as gallic acid (0.73 ppm/mg), benzoic acid (11.22 ppm/mg), p-coumaric acid (3.12 ppm/mg), ferulic acid (5.47 ppm/mg), cinnamic acid (3.54 ppm/mg), and sinapic acid (3.17 ppm/mg). In vivo hyperthyroidism was induced using thyroxine in vivo, which increased T3 (triiodothyronine), T4 (tetraiodothyronine), malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. However, it reduced thyroid stimulating hormone (TSH), superoxide dismutase (SOD), and reduced glutathione (GSH). S. sesuvioides methanol extract alleviated thyroxine-induced intoxication in a dose-dependent manner. At a 750 mg/kg (SsCr3) dose, it reduced T3, T4, MDA, IL-6, and TNF-α by 61.23, 41.29, 45.17, 44.66, and 62.03%, respectively, and elevated TSH, SOD, and GSH by 365.52, 94.45, and 95.12%, respectively, relative to the diseased group. Further confirmation was done by histopathological examination, which showed normal thyroid histology where follicles were filled with colloids with more cytoplasmic concentrations. This activity is undoubtedly correlated to the richness of the extract by phenolic acids, as revealed by HPLC. In silico ADME/TOPKAT prediction performed on the secondary metabolites identified in S. sesuvioides methanol extract revealed acceptable pharmacodynamic, pharmacokinetic, and toxicity potential. Thus, S. sesuvioides could serve as a promising source for alleviating hyperthyroidism, which could be further incorporated into pharmaceutical preparations.

4.
Pharmaceutics ; 15(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004517

RESUMO

Miconazole nitrate (MCNR) is a BCS class II antifungal drug with poor water solubility. Although numerous attempts have been made to increase its solubility, formulation researchers struggle with this significant issue. Transethosomes are promising novel nanocarriers for improving the solubility and penetration of drugs that are inadequately soluble and permeable. Thus, the objective of this study was to develop MCNR-loaded transethosomal gel in order to enhance skin permeation and antifungal activity. MCNR-loaded transethosomes (MCNR-TEs) were generated using the thin film hydration method and evaluated for their zeta potential, particle size, polydispersity index, and entrapment efficiency (EE%). SEM, FTIR, and DSC analyses were also done to characterize the optimized formulation of MCNR-TEs (MT-8). The optimized formulation of MCNR-TEs was incorporated into a carbopol 934 gel base to form transethosomal gel (MNTG) that was subjected to ex vivo permeation and drug release studies. In vitro antifungal activity was carried out against Candida albicans through the cup plate technique. An in vivo skin irritation test was also performed on Wistar albino rats. MT-8 displayed smooth spherical transethosomal nanoparticles with the highest EE% (89.93 ± 1.32%), lowest particle size (139.3 ± 1.14 nm), polydispersity index (0.188 ± 0.05), and zeta potential (-18.1 ± 0.10 mV). The release profile of MT-8 displayed an initial burst followed by sustained release, and the release data were best fitted with the Korsmeyer-Peppas model. MCNR-loaded transethosomal gel was stable and showed a non-Newtonian flow. It was found that ex vivo drug permeation of MNTG was 48.76%, which was significantly higher than that of MNPG (plain gel) (p ≤ 0.05) following a 24-h permeation study. The prepared MCNR transethosomal gel exhibited increased antifungal activity, and its safety was proven by the results of an in vivo skin irritation test. Therefore, the developed transethosomal gel can be a proficient drug delivery system via a topical route with enhanced antifungal activity and skin permeability.

5.
Front Pharmacol ; 14: 1136459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305547

RESUMO

Sesuvium sesuvioides (Fenzl) Verdc (Aizoaceae) has been traditionally used in the treatment of inflammation, arthritis, and gout. However, its antiarthritic potential has not been evaluated scientifically. The current study was designed to assess the antiarthritic properties of the n-butanol fraction of S. sesuvioides (SsBu) by phytochemical analysis, in vitro and in vivo pharmacological activities, and in silico studies. Phytochemical analysis showed total phenolic contents (90.7 ± 3.02 mg GAE/g) and total flavonoid contents (23.7 ± 0.69 mg RE/g), and further analysis by GC-MS identified possible bioactive phytocompounds belonging to phenols, flavonoids, steroids, and fatty acids. The in vitro antioxidant potential of SsBu was assessed by DPPH (175.5 ± 7.35 mg TE/g), ABTS (391.6 ± 17.1 mg TE/g), FRAP (418.2 ± 10.8 mg TE/g), CUPRAC (884.8 ± 7.97 mg TE/g), phosphomolybdenum (5.7 ± 0.33 mmol TE/g), and metal chelating activity (9.04 ± 0.58 mg EDTAE/g). Moreover, in the in vitro studies, inhibition (%) of egg albumin and bovine serum albumin denaturation assays showed that the anti-inflammatory effect of SsBu at the dose of 800 µg/ml was comparable to that of diclofenac sodium used as a standard drug. The in vivo antiarthritic activity was assessed to determine the curative impact of SsBu against formalin-induced (dose-dependent significant (p < 0.05) effect 72.2% inhibition at 750 mg/kg compared to standard; 69.1% inhibition) and complete Freund's adjuvant-induced arthritis (40.8%; inhibition compared to standard, 42.3%). SsBu significantly controlled PGE-2 level compared to the control group (p < 0.001) and restored the hematological parameters in rheumatoid arthritis. Treatment with SsBu significantly reduced oxidative stress by reinstating superoxide dismutase, GSH, and malondialdehyde along with pro-inflammatory markers (IL-6 and TNF-α) in arthritic rats. Molecular docking revealed the antiarthritic role of major identified compounds. Kaempferol-3-rutinoside was found to be more potent for COX-1 (-9.2 kcal/mol) and COX-2 inhibition (-9.9 kcal/mol) than diclofenac sodium (COX-1, -8.0 and COX-2, -6.5 kcal/mol). Out of the 12 docked compounds, two for COX-1 and seven for COX-2 inhibition showed more potent binding than the standard drug. The results from the in vitro, in vivo, and in silico approaches finally concluded that the n-butanol fraction of S. sesuvioides had antioxidant and antiarthritic potential, which may be due to the presence of potential bioactive compounds.

6.
Front Pharmacol ; 14: 1326968, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38293669

RESUMO

The objective of the current study was to evaluate the anti-inflammatory, analgesic, and antipyretic potential of Oxystelma esculentum using different animal models. The phytochemical profile was determined by assessing its total phenolic content (TPC) and total flavonoid content (TFC), followed by the high-performance liquid chromatography (HPLC) technique. The in vitro anti-inflammatory potential of O. esculentum ethanolic extract (OEE) was evaluated by lipoxygenase enzyme inhibition activity and a human red blood cell (HRBC) membrane stability assay. The in vivo anti-inflammatory potential of the plant was determined by the carrageenan-induced paw edema test, and the analgesic potential by the hot plate test, tail-flick test, formalin-induced analgesia, acetic acid-induced writhing activities, and yeast-induced elevation of body temperature. The values of total phenolic content (212.6 ± 3.18 µg GAE/g) and total flavonoid content (37.6 ± 1.76 µg QE/g) were observed. The results showed that OEE exhibited significant antioxidant capacity in DPPH (2,2-diphenyl-1-picrylhydrazyl) (266.3 ± 7.35 µmol TE/g), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (1,066.3 ± 7.53 µmol TE/g), and FRAP (ferric reducing antioxidant power) (483.6 ± 3.84 µmol TE/g) assays. The HPLC analysis demonstrated phytocompounds with anti-inflammatory potential, such as chlorogenic acid, gallic acid, 4-hydroxybenzoic acid, caffeic acid, ferulic acid, and coumarin. The plant showed in vitro anti-inflammatory activity through the inhibition of lipoxygenase enzyme with a high percentage (56.66%) and HRBC membrane stability (67.29%). In in vivo studies, OEE exhibited significant (p < 0.05) anti-inflammatory (carrageenan-induced paw edema model), analgesic (hot plate test, tail-flick test, formalin-induced analgesia, and acetic acid-induced writhing), and antipyretic (rectal temperature reduction) responses at different doses (100, 300, and 500 mg/kg). Molecular docking studies showed significant binding affinities of phytocompounds compared to indomethacin and predicted various binding interactions for stable conformations. The results of in vitro, in vivo, and in silico studies supported the anti-inflammatory, analgesic, and antipyretic potential of O. esculentum.

7.
Heliyon ; 8(11): e11332, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36387450

RESUMO

Synthesis of new Cefpodoxime derivatives via Schiff Bases mechanism and the efficiency of their antimicrobial and antiviral activities were addressed. They were analyzed for structural validation by using spectroscopic techniques using FTIR, 1HNMR, and 13CNMR. Molecular docking against IBV Virus papain-like protease (PLPro) was done with Auto dock tools against compounds having excellent IC50 values against IBV (Corona Class) virus. All derivatives showed strong zone of inhibition ranges from (55 ± 2.0 to 70 ± 0.8 mm) against E. coli. Compounds 1,2,4 and 6 derivatives showed remarkable activity against Stenotrophomonas maltophilia and Serratia marcescens. But For most the newly synthesized derivatives C 1 (64 ± 1.60), C 3 (32 ± 0.80), and C 8 (64 ± 1.60) showed potential IC50 values against two variants of Corona class viruses i.e. Avian Influenza (H9) and Avian corona (IBV) viruses. The current study revealed that newly synthesized Schiff Bases possessed strong anti-viral potential. Further studies may make a breakthrough in medical sciences to tackle latest challenges such as Corona Virus Diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...