Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641972

RESUMO

Glycoside hydrolase (GH) family 13 is among the main families of enzymes acting on starch; recently, subfamily 47 of GH13 (GH13_47) has been established. The crystal structure and function of a GH13_47 enzyme from Bacteroides ovatus has only been reported to date. This enzyme has α-amylase activity, while the GH13_47 enzymes comprise approximately 800-900 amino acid residues which are almost double those of typical α-amylases. It is important to know how different the GH13_47 enzymes are from other α-amylases. Rhodothermus marinus JCM9785, a thermophilic bacterium, possesses a gene for the GH13_47 enzyme, which is designated here as RmGH13_47A. Its structure has been predicted to be composed of seven domains: N1, N2, N3, A, B, C, and D. We constructed a plasmid encoding Gly266-Glu886, which contains the N3, A, B, and C domains and expressed the protein in Escherichia coli. The enzyme hydrolyzed starch and pullulan by a neopullulanase-type action. Additionally, the enzyme acted on maltotetraose, and saccharides with α-1,6-glucosidic linkages were observed in the products. Following the replacement of the catalytic residue Asp563 with Ala, the crystal structure of the variant D563A in complex with the enzymatic products from maltotetraose was determined; as a result, electron density for an α-1,6-branched pentasaccharide was observed in the catalytic pocket, and Ile762 and Asp763 interacted with the branched chain of the pentasaccharide. These findings suggest that RmGH13_47A is an α-amylase that prefers α-1,6-branched parts of starch to produce oligosaccharides.

2.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897517

RESUMO

Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.


Assuntos
Carnívoros , Quitinases , Sequência de Aminoácidos , Animais , Carnívoros/metabolismo , Quitina/química , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Dieta , Cães , Camundongos
3.
Appl Microbiol Biotechnol ; 105(8): 3181-3194, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33791835

RESUMO

Thermoplasma trehalase Tvn1315 is predicted to be composed of a ß-sandwich domain (BD) and a catalytic domain (CD) based on the structure of the bacterial GH15 family glucoamylase (GA). Tvn1315 as well as Tvn1315 (Δ5), in which the 5 N-terminal amino acids are deleted, could be expressed in Escherichia coli as active enzymes, but deletion of 10 residues (Δ10) led to inclusion body formation. To further investigate the role of the N-terminal region of BD, we constructed five mutants of Δ5, in which each of the 5th to 10th residues of the N-terminus of Tvn1315 was mutated to Ala. Every mutant protein could be recovered in soluble form, but only a small fraction of the Y9A mutant was recovered in the soluble fraction. The Y9A mutant recovered in soluble form had similar specific activity to the other proteins. Subsequent mutation analysis at the 9th position of Tvn1315 in Δ5 revealed that aromatic as well as bulky hydrophobic residues could function properly, but residues with hydroxy groups impaired the solubility. Similar results were obtained with mutants based on untruncated Tvn1315. When the predicted BD, Δ5BD, Δ10BD, and BD mutants were expressed, the Δ10BD protein formed inclusion bodies, and the BD mutants behaved similarly to the Δ5 and full-length enzyme mutants. These results suggest that the hydrophobic region is involved in the solubilization of BD during the folding process. Taken together, these results indicate that the solubility of CD depends on BD folding. KEY POINTS: • N-terminal hydrophobic region of the BD is involved in the protein folding. • The N-terminal hydrophobic region of the BD is also involved in the BD folding. • BD is able to weakly interact with the insoluble ß-glucan.


Assuntos
Archaea , Trealase , Sequência de Aminoácidos , Archaea/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dobramento de Proteína , Trealase/metabolismo
4.
Int J Biol Macromol ; 164: 2895-2902, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853624

RESUMO

Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been attracting research interest due to their involvement in various pathological conditions such as Gaucher's disease and asthma, respectively. Both enzymes are highly expressed in mice, while the level of AMCase mRNA was low in human tissues. In addition, the chitinolytic activity of the recombinant human AMCase was significantly lower than that of the mouse counterpart. Here, we revealed a substantially higher chitinolytic and transglycosylation activity of human Chit1 against artificial and natural chitin substrates as compared to the mouse enzyme. We found that the substitution of leucine (L) by tryptophan (W) at position 218 markedly reduced both activities in human Chit1. Conversely, the L218W substitution in mouse Chit1 increased the activity of the enzyme. These results suggest that Chit1 may compensate for the low of AMCase activity in humans, while in mice, highly active AMCase may supplements low Chit1 activity.


Assuntos
Substituição de Aminoácidos , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , Glicosilação , Hexosaminidases/genética , Hexosaminidases/metabolismo , Humanos , Camundongos , Proteínas Recombinantes/metabolismo
5.
Biosci Biotechnol Biochem ; 84(12): 2499-2507, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32799730

RESUMO

Di-N-acetylchitobiase (Ctbs) degrades ß-1,4 glycoside bonds of the chitobiose core of free asparagine-linked glycan. This study examined whether Ctbs degrades chitin-oligosaccharides to GlcNAc in mammals. We analyzed Ctbs mRNA and protein expression in mouse tissues and characterized enzymatic activity using recombinant mouse Ctbs expressed in Escherichia coli. Ctbs mRNA and protein were expressed in various tissues of mouse, including the stomach. Optimal conditions for recombinant Ctbs were pH 3.0 and 45°C, and the recombinant enzyme was retained more than 94% activity after incubation at pH 3.0-7.0 and below 37°C. The recombinant Ctbs hydrolyzed (GlcNAc)3 and (GlcNAc)6 at pH 3.0 and produced GlcNAc. The K m of Ctbs was lowest with (GlcNAc)3 as a substrate. k cat/K m was fourfold as high with (GlcNAc)3 and (GlcNAc)4 as substrates than with (GlcNAc)2. These results suggest that Ctbs digests chitin-oligosaccharides or (GlcNAc)2 of reducing-end residues of oligosaccharides and produces GlcNAc in mouse tissues.


Assuntos
Acetilglucosaminidase/metabolismo , Quitina/química , Quitina/metabolismo , Oligossacarídeos/química , Animais , Cinética , Camundongos , Especificidade por Substrato
6.
MethodsX ; 7: 100881, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32346528

RESUMO

Fluorophore-assisted carbohydrate electrophoresis (FACE) enables detection and quantification of degradation products from artificial and natural chitin substrates such as 4-NP-(GlcNAc)2, (GlcNAc)4 and colloidal chitin. The FACE method has been improved by our group for analysis of chitooligosaccharides in the presence of several buffer systems commonly used in the biochemical evaluation of chitinolytic activities of enzymes at pH 2.0-8.0. FACE is a very sensitive technique detecting picomolar amounts of molecules. We optimized the detection conditions as follows: exposure type, precision; sensitivity, high resolution; exposure time, 5 s. We evaluated the (GlcNAc)2 levels using a standard curve that allows chitooligosaccharides quantification at up to 10 nmol amounts. Using the method presented here, the chitinolytic properties of different chitinases can be compared directly. Serratia chitinase A (ChiA) and chitinase B (ChiB), two well-studied bacterial chitinases, have been shown by HPLC to have a synergistic effect on the chitin degradation rate. Using the FACE method, we determined the combinatory effects of mouse chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) in natural chitin substrates processing.•FACE is a simple and quantitative method.•Our improved procedure enables the quantification of chitooligosaccharides produced by chitinases at pH 2.0-8.0.•FACE is able to quantify chitooligosaccharides at up to 10 nmol amounts.

7.
Appl Microbiol Biotechnol ; 104(5): 1837-1847, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925485

RESUMO

Trehalose is a stable disaccharide that consists of two glucose units linked primarily by an α,α-(1 → 1)-linkage, and it has been found in a wide variety of organisms. In these organisms, trehalose functions not only as a source of carbon energy but also as a protector against various stress conditions. In addition, this disaccharide is attractive for use in a wide range of applications due to its bioactivities. In trehalose metabolism, direct trehalose-hydrolyzing enzymes are known as trehalases, which have been reported for bacteria, archaea, and eukaryotes, and are classified into glycoside hydrolase 37 (GH37), GH65, and GH15 families according to the Carbohydrate-Active enZyme (CAZy) database. The catalytic domains (CDs) of these enzymes commonly share (α/α)6-barrel structures and have two amino acid residues, Asp and/or Glu, that function as catalytic residues in an inverting mechanism. In this review, I focus on diverse and common features of trehalases within different GH families and their contributions to microbial trehalose metabolism.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Trealase/metabolismo , Trealose/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Trealase/química , Trealase/genética
8.
Int J Biol Macromol ; 134: 882-890, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108147

RESUMO

Chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) have been implicated in food processing and various pathophysiological conditions such as chronic inflammatory diseases. By combination of the colorimetric analysis and fluorophore-assisted carbohydrate electrophoresis (FACE) method, we directly compared the chitinolytic properties of mouse Chit1 and AMCase and determined their combinatory effects in artificial and natural chitin substrates processing. Chit1 and AMCase display different dynamics of chitinolytic properties through acidic to neutral conditions. At pH2.0, the activity of AMCase was higher than that of Chit1 and stronger or comparable with that of Serratia marcescens chitinase B, a well-characterized bacterium chitinase. Changes of degradation products using different substrates indicate that AMCase and Chit1 have diverse properties under various pH conditions. Exposure of the chitin substrates to both Chit1 and AMCase did not indicate any mutual interference of these enzymes and showed no synergistic effect, in contrast to observations regarding some bacterial chitinases. Our results suggest that Chit1 and AMCase have no synergistic effect under physiological conditions.


Assuntos
Quitina/química , Quitinases/química , Hexosaminidases/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Quitinases/genética , Colorimetria , Concentração de Íons de Hidrogênio , Hidrólise , Camundongos , Peso Molecular , Proteínas Recombinantes , Especificidade por Substrato
9.
Sci Rep ; 9(1): 159, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655565

RESUMO

Chitin is a polymer of N-acetyl-D-glucosamine (GlcNAc) and a main constituent of insects' exoskeleton. Insects are rich in protein with high energy conversion efficiency. Recently, we have reported that acidic chitinases (Chia) act as digestive enzymes in mouse, pig and chicken (omnivorous) but not in dog (carnivorous) and bovine (herbivorous), indicating that feeding behavior affects Chia expression levels, and determines chitin digestibility in the particular animals. Common marmoset (Callithrix jacchus) belongs to New World monkey family and provides a potential bridge between mouse models and human diseases. Common marmoset is an insectivorous nonhuman primate with unknown expression levels and enzymatic functions of the Chia homologue, CHIA. Here, we report that common marmoset highly expresses pepsin-, trypsin- and chymotrypsin-resistant CHIA in the stomach. We show that CHIA is most active at pH 2.0 and degrades chitin and mealworm shells into GlcNAc dimers under gastrointestinal conditions. Although common marmoset and crab-eating monkey (Old World monkey) have two CHIA genes in their genomes, they primarily express one gene in the stomach. Thus, this study is the first to investigate expression levels and enzymatic functions of CHIA in a New World primate, contributing to the understanding of dietary adaptation and digestion in this taxon.


Assuntos
Callithrix/metabolismo , Quitina/metabolismo , Quitinases , Estômago/enzimologia , Animais , Quitinases/química , Quitinases/metabolismo , Dieta , Comportamento Alimentar/psicologia
10.
Appl Microbiol Biotechnol ; 103(4): 1777-1787, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30610281

RESUMO

Chitinases are generally composed of multiple domains; a catalytic domain and one or more additional domains that are not absolutely required but may modify the chitinolytic activity. The LinChi78 chitinase from Listeria innocua has a catalytic domain (CatD), a fibronectin type III-like (FnIII) domain, a chitin-binding domain (ChBD), and an unknown-function region (UFR) located between the CatD and FnIII domains. The UFR is 146 amino acid residues in length and does not have a homologous domain in the Conserved Domain Database. We performed a functional analysis of these domains and the UFR using several C-terminally and internally deleted mutants of LinChi78. Hydrolysis of an artificial substrate was almost unaffected by deletion of the ChBD and/or the FnIII domain, although the ChBD-deleted enzymes were approximately 30% less active toward colloidal chitin than LinChi78. On the other hand, deletion of the UFR led to an extensive loss of chitinase activity toward an artificial substrate as well as polymeric substrates. Upon further analysis, we found that the GKQTI stretch, between the 567th (G) and 571th (I) amino acid residues, in the UFR is critical for LinChi78 activity and demonstrated that Gln569 and Ile571 play central roles in eliciting this activity. Taken together, these results indicated that LinChi78 has a unique catalytic region composed of a typical CatD and an additional region that is essential for activity. Characterization of the unique catalytic region of LinChi78 will improve our understanding of GH18 chitinases.


Assuntos
Quitinases/metabolismo , Listeria/enzimologia , Quitinases/química , Quitinases/genética , Análise Mutacional de DNA , Hidrólise , Domínios Proteicos , Deleção de Sequência
11.
Genes (Basel) ; 9(5)2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29747453

RESUMO

Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey (Macaca fascicularis) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.

12.
Appl Microbiol Biotechnol ; 102(10): 4445-4455, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574614

RESUMO

Two archaeal trehalase-like genes, Saci1250 and Saci1816, belonging to glycoside hydrolase family 15 (GH15) from the acidophilic Crenarchaeon Sulfolobus acidocaldarius were expressed in Escherichia coli. The gene products showed trehalose-hydrolyzing activities, and the names SaTreH1 and SaTreH2 were assigned to Saci1816 and Saci1250 gene products, respectively. These newly identified enzymes functioned within a narrow range of acidic pH values at elevated temperatures, which is similar to the behavior of Euryarchaeota Thermoplasma trehalases. SaTreH1 displayed high KM and kcat values, whereas SaTreH2 had lower KM and kcat values despite a high degree of identity in their primary structures. A mutation analysis indicated that two glutamic acid residues in SaTreH1, E374 and E574, may be involved in trehalase catalysis because SaTreH1 E374Q and E574Q showed greatly reduced trehalose-hydrolyzing activities. Additional mutations substituting G573 and H575 residues with serine and glutamic acid residues, respectively, to mimic the TVN1315 sequence resulted in a decrease in trehalase activity and thermal stability. Taken together, the results indicated that Crenarchaea trehalases adopt active site structures that are similar to Euryarchaeota enzymes but have distinct molecular features. The identification of these trehalases could extend our understanding of the relationships between the structure and function of GH15 trehalases as well as other family enzymes and will provide insights into archaeal trehalose metabolism.


Assuntos
Sulfolobus acidocaldarius/enzimologia , Trealase/metabolismo , Trealose/metabolismo , Domínio Catalítico , Escherichia coli/genética , Domínios Proteicos , Sulfolobus acidocaldarius/genética , Trealase/genética
13.
Sci Rep ; 8(1): 1461, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362395

RESUMO

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in chitin-containing organism including crustaceans, insects and fungi. Recently, we reported that acidic chitinase (Chia) is highly expressed in mouse, chicken and pig stomach tissues and that it can digest chitin in the respective gastrointestinal tracts (GIT). In this study, we focus on major livestock and domestic animals and show that the levels of Chia mRNA in their stomach tissues are governed by the feeding behavior. Chia mRNA levels were significantly lower in the bovine (herbivores) and dog (carnivores) stomach than those in mouse, pig and chicken (omnivores). Consistent with the mRNA levels, Chia protein was very low in bovine stomach. In addition, the chitinolytic activity of E. coli-expressed bovine and dog Chia enzymes were moderately but significantly lower compared with those of the omnivorous Chia enzymes. Recombinant bovine and dog Chia enzymes can degrade chitin substrates under the artificial GIT conditions. Furthermore, genomes of some herbivorous animals such as rabbit and guinea pig do not contain functional Chia genes. These results indicate that feeding behavior affects Chia expression levels as well as chitinolytic activity of the enzyme, and determines chitin digestibility in the particular animals.


Assuntos
Quitina/química , Quitinases/genética , Quitinases/metabolismo , Estômago/enzimologia , Animais , Bovinos , Galinhas , Cães , Comportamento Alimentar , Regulação da Expressão Gênica , Cobaias , RNA Mensageiro/genética , Especificidade da Espécie , Estômago/química
14.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370114

RESUMO

Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.


Assuntos
Quitina/química , Quitinases/química , Ácido Acético/química , Animais , Galinhas , Quitina/metabolismo , Quitinases/metabolismo , Ligação Proteica , Estômago/enzimologia , Suínos
15.
Sci Rep ; 7(1): 12963, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021549

RESUMO

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), is a major structural component in chitin-containing organism including crustaceans, insects and fungi. Mammals express two chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Here, we report that pig AMCase is stable in the presence of other digestive proteases and functions as chitinolytic enzyme under the gastrointestinal conditions. Quantification of chitinases expression in pig tissues using quantitative real-time PCR showed that Chit1 mRNA was highly expressed in eyes, whereas the AMCase mRNA was predominantly expressed in stomach at even higher levels than the housekeeping genes. AMCase purified from pig stomach has highest activity at pH of around 2-4 and remains active at up to pH 7.0. It was resistant to robust proteolytic activities of pepsin at pH 2.0 and trypsin and chymotrypsin at pH 7.6. AMCase degraded polymeric chitin substrates including mealworm shells to GlcNAc dimers. Furthermore, we visualized chitin digestion of fly wings by endogenous AMCase and pepsin in stomach extract. Thus, pig AMCase can function as a protease resistant chitin digestive enzyme at broad pH range present in stomach as well as in the intestine. These results indicate that chitin-containing organisms may be a sustainable feed ingredient in pig diet.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Dieta , Endopeptidases/metabolismo , Trato Gastrointestinal/metabolismo , Animais , Quitinases/genética , Quitinases/isolamento & purificação , Quimotripsina/metabolismo , Drosophila/química , Especificidade de Órgãos , Pepsinogênio A/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Solubilidade , Especificidade por Substrato , Suínos/genética , Tenebrio , Extratos de Tecidos , Tripsina/metabolismo , Asas de Animais/química
16.
FEBS Lett ; 591(20): 3310-3318, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28833103

RESUMO

Mouse acidic mammalian chitinase (AMCase) degrades chitin with highest efficiency at pH 2.0 and is active up to pH 8.0. Here, we report that mouse AMCase also exhibits transglycosylation activity under neutral conditions. We incubated natural and artificial chitin substrates with mouse AMCase at pH 2.0 or 7.0 and analyzed the resulting oligomers using an improved method of fluorescence-assisted carbohydrate electrophoresis. Mouse AMCase produces primarily dimers of N-acetyl-d-glucosamine [(GlcNAc)2 ] under both pH conditions while generating transglycosylated (GlcNAc)3 primarily at pH 7.0 and at lower levels at pH 2.0. These results indicate that mouse AMCase catalyzes hydrolysis as well as transglycosylation and suggest that this enzyme can play a novel role under physiological conditions in peripheral tissues, such as the lungs.


Assuntos
Acetilglucosamina/metabolismo , Quitina/metabolismo , Quitinases/metabolismo , Animais , Quitinases/genética , Clonagem Molecular , Dimerização , Eletroforese/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Expressão Gênica , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Pulmão/enzimologia , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Sci Rep ; 7(1): 6662, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751762

RESUMO

Chitin, a polymer of N-acetyl-D-glucosamine (GlcNAc), functions as a major structural component in crustaceans, insects and fungi and is the second most abundant polysaccharide in the nature. Although these chitin-containing organisms have been suggested as novel animal feed resources, chitin has long been considered as indigestible fibers in the animal body. Recently, we reported that acidic chitinase (Chia) is a protease-resistant major glycosidase in mouse gastrointestinal tract (GIT) and that it digests chitin in the mouse stomach. However, the physiological role of Chia in other animals including poultry remains unknown. Here, we report that Chia can function as a digestive enzyme that breaks down chitin-containing organisms in chicken GIT. Chia mRNA is predominantly expressed in the glandular stomach tissue in normal chicken. We also show that chicken Chia has a robust chitinolytic activity at pH 2.0 and is highly resistant to proteolysis by pepsin and trypsin/chymotrypsin under conditions mimicking GIT. Chia degraded shells of mealworm larvae in the presence of digestive proteases and produced (GlcNAc)2. Thus, functional similarity of chicken Chia with the mouse enzyme suggests that chitin-containing organisms can be used for alternative poultry diets not only as whole edible resources but also as enhancers of their nutritional value.


Assuntos
Galinhas/metabolismo , Quitina/metabolismo , Quitinases/metabolismo , Digestão , Animais , Concentração de Íons de Hidrogênio , Intestinos/enzimologia , Peptídeo Hidrolases , Estômago/enzimologia , Tenebrio/química
18.
AMB Express ; 7(1): 51, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28244030

RESUMO

Bacillus thuringiensis is a Gram-positive soil bacterium that is known to be a bacterial biopesticide that produces insecticidal proteins called crystal proteins (Cry). In the insecticidal process, chitinases are suggested to perforate the peritrophic membrane barrier to facilitate the invasion of the Cry proteins into epithelial membranes. A chitinase gene from B. thuringiensis was successfully expressed in a soluble form in Escherichia coli, and the gene product was purified and characterized. The purified recombinant enzyme, BthChi74, hydrolyzed an artificial substrate, 4-nitrophenyl N,N'-diacetyl-ß-D-chitobioside [4NP-(GlcNAc)2], and the natural substrates, colloidal chitin and crystalline α-chitin, but it did not hydrolyze cellulose. BthChi74 exhibited catalytic activity under a weakly acidic to neutral pH range at 50 °C, and it was stable over a wide pH range for 24 h. Differential scanning fluorimetry (DSF) indicated a protein melting temperature (T m) of 63.6 °C. Kinetic analysis revealed k cat and K M values of 1.5 s-1 and 159 µM, respectively, with 4NP-(GlcNAc)2 as a substrate. BthChi74 produced (GlcNAc)2 and GlcNAc from colloidal chitin and α-chitin as substrates, but the activity toward the latter was lower than that toward the former. BthChi74 could bind similarly to chitin beads, crystalline α-chitin, and cellulose through a unique family 2 carbohydrate-binding module (CBM2). The structure-function relationships of BthChi74 are discussed in relation to other chitinases, such as Listeria chitinase, which possesses a family 5 carbohydrate-binding module (CBM5).

19.
Carbohydr Polym ; 164: 145-153, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28325311

RESUMO

Acidic mammalian chitinase (AMCase) has been implicated in various pathophysiological conditions including asthma, allergic inflammation and food processing. AMCase is most active at pH 2.0, and its activity gradually decreases to up to pH 8. Here we analyzed chitin degradation by AMCase in weak acidic to neutral conditions by fluorophore-assisted carbohydrate electrophoresis established originally for oligosaccharides analysis. We found that specific fragments with slower-than-expected mobility as defined by chitin oligosaccharide markers were generated at pH 5.0∼8.0 as by-products of the reaction. We established an improved method for chitin oligosaccharides suppressing this side reaction by pre-acidification of the fluorophore-labeling reaction mixture. Our improved method specifically detects chitin oligosaccharides and warrants quantification of up to 50nmol of the material. Using this strategy, we found that AMCase produced dimer of N-acetyl-d-glucosamine (GlcNAc) at strong acidic to neutral condition. Moreover, we found that AMCase generates (GlcNAc)2 as well as (GlcNAc)3 under physiological conditions.


Assuntos
Quitina/química , Quitinases/química , Fluorescência , Glucosamina/química , Animais , Concentração de Íons de Hidrogênio , Camundongos
20.
Appl Microbiol Biotechnol ; 101(6): 2415-2425, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942757

RESUMO

Clostridium sp. G0005 glucoamylase (CGA) is composed of a ß-sandwich domain (BD), a linker, and a catalytic domain (CD). In the present study, CGA was expressed in Escherichia coli as inclusion bodies when the N-terminal region (39 amino acid residues) of the BD was truncated. To further elucidate the role of the N-terminal region of the BD, we constructed N-terminally truncated proteins (Δ19, Δ24, Δ29, and Δ34) and assessed their solubility and activity. Although all evaluated proteins were soluble, their hydrolytic activities toward maltotriose as a substrate varied: Δ19 and Δ24 were almost as active as CGA, but the activity of Δ29 was substantially lower, and Δ34 exhibited little hydrolytic activity. Subsequent truncation analysis of the N-terminal region sequence between residues 25 and 28 revealed that truncation of less than 26 residues did not affect CGA activity, whereas truncation of 26 or more residues resulted in a substantial loss of activity. Based on further site-directed mutagenesis and N-terminal sequence analysis, we concluded that the 26XaaXaaTrp28 sequence of CGA is important in exhibiting CGA activity. These results suggest that the N-terminal region of the BD in bacterial GAs may function not only in folding the protein into the correct structure but also in constructing a competent active site for catalyzing the hydrolytic reaction.


Assuntos
Proteínas de Bactérias/química , Clostridium/enzimologia , Glucana 1,4-alfa-Glucosidase/química , Trissacarídeos/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Clostridium/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Hidrólise , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Trissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...