Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 8(9)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509980

RESUMO

S-Allyl-l-cysteine sulfoxide (ACSO) is a precursor of garlic-odor compounds like diallyl disulfide (DADS) and diallyl trisulfide (DATS) known as bioactive components. ACSO has suitable properties as a food material because it is water-soluble, odorless, tasteless and rich in bulbs of fresh garlic. The present study was conducted to examine the preventive effect of ACSO on hepatic injury induced by CCl4 in rats. ACSO, its analogs and garlic-odor compounds were each orally administered via gavage for five consecutive days before inducing hepatic injury. Then, biomarkers for hepatic injury and antioxidative state were measured. Furthermore, we evaluated the absorption and metabolism of ACSO in the small intestine of rats and NF-E2-related factor 2 (Nrf2) nuclear translocation by ACSO using HepG2 cells. As a result, ACSO, DADS and DATS significantly suppressed the increases in biomarkers for hepatic injury such as the activities of aspartate transaminase (AST), alanine transaminase (ALT) and lactate dehydrogenase (LDH), and decreases in antioxidative potency such as glutathione (GSH) level and the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx). We also found ACSO was absorbed into the portal vein from the small intestine but partially metabolized to DADS probably in the small intestine. In in vitro study, ACSO induced Nrf2 nuclear translocation in HepG2 cells, which is recognized as an initial trigger to induce antioxidative and detoxifying enzymes. Taken together, orally administered ACSO probably reached the liver and induced antioxidative and detoxifying enzymes by Nrf2 nuclear translocation, resulting in prevention of hepatic injury. DADS produced by the metabolism of ACSO in the small intestine might also have contributed to the prevention of hepatic injury. These results suggest potential use of ACSO in functional foods that prevent hepatic injury and other diseases caused by reactive oxygen species (ROS).

2.
PLoS One ; 9(5): e94538, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788663

RESUMO

Gene silencing and RNA interference are major cellular processes that control gene expression via the cleavage of target mRNA. Eukaryotic translation initiation factor 2C2 (EIF2C2, Argonaute protein 2, Ago2) is considered to be the major player of RNAi as it is the core component of RISC complexes. While a considerable amount of research has focused on RNA interference and its associated mechanisms, the nature and mechanisms of nucleotide recognition by the PAZ domain of EIF2C2/Ago2 have not yet been characterized. Here, we demonstrate that the EIF2C2/Ago2 PAZ domain has an inherent lack of binding to adenine nucleotides, a feature that highlights the poor binding of 3'-adenylated RNAs with the PAZ domain as well as the selective high trimming of the 3'-ends of miRNA containing adenine nucleotides. We further show that the PAZ domain selectively binds all ribonucleotides (except adenosine), whereas it poorly recognizes deoxyribonucleotides. In this context, the modification of dTMP to its ribonucleotide analogue gave a drastic improvement of binding enthalpy and, hence, binding affinity. Additionally, higher in vivo gene silencing efficacy was correlated with the stronger PAZ domain binders. These findings provide new insights into the nature of the interactions of the EIF2C2/Ago2 PAZ domain.


Assuntos
Proteínas Argonautas/química , Proteínas Argonautas/metabolismo , Metabolismo Energético , Nucleotídeos/metabolismo , Interferência de RNA , Proteínas Argonautas/deficiência , Proteínas Argonautas/genética , Sequência de Bases , Entropia , Células HeLa , Temperatura Alta , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Especificidade por Substrato
3.
Appl Environ Microbiol ; 72(5): 3198-205, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16672458

RESUMO

The carbazole degradative car-I gene cluster (carAaIBaIBbICIAcI) of Sphingomonas sp. strain KA1 is located on the 254-kb circular plasmid pCAR3. Carbazole conversion to anthranilate is catalyzed by carbazole 1,9a-dioxygenase (CARDO; CarAaIAcI), meta-cleavage enzyme (CarBaIBbI), and hydrolase (CarCI). CARDO is a three-component dioxygenase, and CarAaI and CarAcI are its terminal oxygenase and ferredoxin components. The car-I gene cluster lacks the gene encoding the ferredoxin reductase component of CARDO. In the present study, based on the draft sequence of pCAR3, we found multiple carbazole degradation genes dispersed in four loci on pCAR3, including a second copy of the car gene cluster (carAaIIBaIIBbIICIIAcII) and the ferredoxin/reductase genes fdxI-fdrI and fdrII. Biotransformation experiments showed that FdrI (or FdrII) could drive the electron transfer chain from NAD(P)H to CarAaI (or CarAaII) with the aid of ferredoxin (CarAcI, CarAcII, or FdxI). Because this electron transfer chain showed phylogenetic relatedness to that consisting of putidaredoxin and putidaredoxin reductase of the P450cam monooxygenase system of Pseudomonas putida, CARDO systems of KA1 can be classified in the class IIA Rieske non-heme iron oxygenase system. Reverse transcription-PCR (RT-PCR) and quantitative RT-PCR analyses revealed that two car gene clusters constituted operons, and their expression was induced when KA1 was exposed to carbazole, although the fdxI-fdrI and fdrII genes were expressed constitutively. Both terminal oxygenases of KA1 showed roughly the same substrate specificity as that from the well-characterized carbazole degrader Pseudomonas resinovorans CA10, although slight differences were observed.


Assuntos
Proteínas de Bactérias/genética , Carbazóis/metabolismo , Família Multigênica , Plasmídeos/genética , Sphingomonas/enzimologia , Sphingomonas/genética , ortoaminobenzoatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Dados de Sequência Molecular , Oxigenases/genética , Oxigenases/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA