Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38982331

RESUMO

In this paper, we describe our discovery of burnettiene A (1) as an anti-malarial compound from the culture broth of Lecanicillium primulinum (Current name: Flavocillium primulinum) FKI-6715 strain utilizing our original multidrug-sensitive yeast system. This polyene-decalin polyketide natural product was originally isolated as an anti-fungal active compound from Aspergillus burnettii. However, the anti-fungal activity of 1 has been revealed in only one fungal species for and the mechanism of action of 1 remains unknown. After the validation of mitochondrial function inhibitory of 1, we envisioned a new anti-malarial drug discovery platform based on mitochondrial function inhibitory activity. We evaluated anti-malarial activity and 1 showed anti-malarial activity against Plasmodium falciparum FCR3 (chloroquine sensitive) and K1 strain (chloroquine resistant). Our study revealed the utility of our original screening system based on a multidrug-sensitive yeast and mitochondrial function inhibitory activity for the discovery of new anti-malarial drug candidates.

2.
Nat Commun ; 15(1): 5779, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987535

RESUMO

To the best of our knowledge, enzymes that catalyse intramolecular Diels-Alder ([4+2] cycloaddition) reactions are frequently reported in natural product biosynthesis; however, no native enzymes utilising Lewis acid catalysis have been reported. Verticilactam is a representative member of polycyclic macrolactams, presumably produced by spontaneous cycloaddition. We report that the intramolecular [4+2] cycloadditions can be significantly accelerated by ferredoxins (Fds), a class of small iron-sulphur (Fe-S) proteins. Through iron atom substitution by Lewis acidic gallium (Ga) iron and computational calculations, we confirm that the ubiquitous Fe-S cluster efficiently functions as Lewis acid to accelerate the tandem [4+2] cycloaddition and Michael addition reactions by lowering free energy barriers. Our work highlights Nature's ingenious strategy to generate complex molecule structures using the ubiquitous Fe-S protein. Furthermore, our study sheds light on the future design of Fd as a versatile Lewis acid catalyst for [4+2] cycloaddition reactions.


Assuntos
Produtos Biológicos , Reação de Cicloadição , Proteínas Ferro-Enxofre , Ácidos de Lewis , Produtos Biológicos/metabolismo , Produtos Biológicos/química , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/química , Ácidos de Lewis/química , Ácidos de Lewis/metabolismo , Catálise , Ferro/química , Ferro/metabolismo , Lactamas/metabolismo , Lactamas/química , Biocatálise
3.
J Nat Prod ; 87(4): 855-860, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412225

RESUMO

Two new compounds, kinanthraquinone C (1) and kinanthraquinone D (2), were isolated along with two known compounds, kinanthraquinone (3) and kinanthraquinone B (4), produced by the heterologous expression of the kiq biosynthetic gene cluster and its pathway-specific regulator, kiqA, in Streptomyces lividans TK23. The chemical structures of compounds 1 and 2 were determined using mass spectrometry and nuclear magnetic resonance analyses. To examine a biosynthetic pathway of compounds 1 and 2, incubation experiments were conducted using S. lividans TK23 to supply the compounds 3 and 4. These experiments indicated that compounds 3 and 4 were converted to compounds 2 and 1, respectively, by the endogenous enzymes of S. lividans TK23. Compounds 2, 3, and 4 had antimalarial activities at half-maximal inhibitory concentration values of 0.91, 1.2, and 15 µM, respectively, without cytotoxicity up to 30 µM.


Assuntos
Antraquinonas , Antimaláricos , Streptomyces lividans , Antimaláricos/farmacologia , Antimaláricos/química , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Estrutura Molecular , Antraquinonas/farmacologia , Antraquinonas/química , Plasmodium falciparum/efeitos dos fármacos , Biotransformação , Família Multigênica , Ressonância Magnética Nuclear Biomolecular
4.
Org Lett ; 26(3): 597-601, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198624

RESUMO

Fusaramin (1) was isolated as a mitochondrial inhibitor. However, the fungal producer stops producing 1, which necessitates us to supply 1 by total synthesis. We proposed the complete stereochemical structure based on the biosynthetic pathway of sambutoxin. We have established concise and robust total synthesis of 1, enabling us to determine the complete stereochemical structure and to elucidate the structure-activity relationship, and uncover the hidden antiplant pathogenic fungal activity.


Assuntos
Anti-Infecciosos , Fungos , Anti-Infecciosos/química , Relação Estrutura-Atividade , Micotoxinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA