Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Clin Exp Dent ; 13(12): e1258-e1270, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34987719

RESUMO

BACKGROUND: Rapid maxillary expansion (RME) is an orthodontic procedure used to correct transverse maxillary deficiency. Due to the anatomical relationship between the palate and the nasal cavity, RME promotes an increase in nasal dimensions, which should hypothetically improve nasal respiratory function. Objective: This review aimed to systematically verify studies that assessed the effects of RME on nasal patency in mouth-breathing children and adolescents. MATERIAL AND METHODS: An electronic search was performed in the MEDLINE databases via OVID, Scopus and EMBASE. The terms were: "children and adolescents", "rapid maxillary expansion" and "mouth breathing". The search was conducted in October 2019, according to the criteria of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The assessment of the quality of the studies was conducted by two evaluators, using the Fowkes & Fulton´s guidelines for critical appraisal of medical research. RESULTS: 475 titles were identified and 18 articles were selected. All of them showed high methodological quality, but without randomized clinical trials. The instruments evaluated were: teleradiography, frontal postero-anterior radiography, computed tomography, acoustic rhinometry and computed rhinomanometry. CONCLUSIONS: This review shows that RME promotes the enlargement of dental arches and of the nasal and maxillary structures, with improved mouth breathing in the short term. However, its long-term benefits could not be proved so far. More robust results of the effectiveness of RME in mouth breathing can be achieved with meta-analysis studies, with a consensual definition of the long-term follow-up period after RME. Key words:Child, adolescent, maxillary expansion, palatal expansion, mouth breathing.

2.
Braz. j. otorhinolaryngol. (Impr.) ; 84(1): 40-50, Jan.-Feb. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889342

RESUMO

Abstract Introduction To provide clinical information and diagnosis in mouth breathers with transverse maxillary deficiency with posterior crossbite, numerous exams can be performed; however, the correlation among these exams remains unclear. Objective To evaluate the correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Methods A cross-sectional study was conducted in 30 mouth breathers with transverse maxillary deficiency (7-13 y.o.) patients with posterior crossbite. The examinations assessed: (i) acoustic rhinometry: nasal volumes (0-5 cm and 2-5 cm) and minimum cross-sectional areas 1 and 2 of nasal cavity; (ii) computed rhinomanometry: flow and average inspiratory and expiratory resistance; (iii) cone-beam computed tomography: coronal section on the head of inferior turbinate (Widths 1 and 2), middle turbinate (Widths 3 and 4) and maxilla levels (Width 5). Acoustic rhinometry and computed rhinomanometry were evaluated before and after administration of vasoconstrictor. Results were compared by Spearman's correlation and Mann-Whitney tests (α = 0.05). Results Positive correlations were observed between: (i) flow evaluated before administration of vasoconstrictor and Width 4 (Rho = 0.380) and Width 5 (Rho = 0.371); (ii) Width 2 and minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.380); (iii) flow evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = 0.421), nasal volumes of 2-5 cm (Rho = 0.393) and minimum cross-sectional areas 1 (Rho = 0.375); (iv) Width 4 and nasal volumes of 0-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), nasal volumes of 2-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.410) and minimum cross-sectional areas 1 after administration of vasoconstrictor (Rho = 0.426); (v) Width 5 and Width 1 (Rho = 0.542), Width 2 (Rho = 0.411), and Width 4 (Rho = 0.429). Negative correlations were observed between: (i) Width 4 and average inspiratory resistance (Rho = −0.385); (ii) average inspiratory resistance evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = −0.382), and average expiratory resistance evaluated before administration of vasoconstrictor and minimum cross-sectional areas 1 (Rho = −0.362). Conclusion There were correlations between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency.


Resumo Introdução Numerosos exames podem ser realizados para fornecer informações clínicas e diagnósticas em respiradores bucais com atresia maxilar e mordida cruzada posterior, entretanto a correlação entre esses exames ainda é incerta. Objetivo Avaliar a correlação entre rinometria acústica, rinomanometria computadorizada e tomografia computadorizada por feixe cônico em respiradores bucais com atresia maxilar. Método Um estudo de corte transversal foi realizado em 30 respiradores bucais com atresia maxilar (7-13 anos) com mordida cruzada posterior. Os exames avaliados foram: (i) rinomanometria acústica: volumes nasais (0-5 cm e 2-5 cm) e áreas mínimas de corte transversal 1 e 2 da cavidade nasal; (ii) rinomanometria computadorizada: fluxo nasal e resistências médias inspiratórias e expiratórias; (iii) tomografia computadorizada por feixe cônico: corte coronal na cabeça da concha inferior (larguras 1 e 2), concha média (larguras 3 e 4) e na maxila (Largura 5). Rinomanometria acústica e rinomanometria computadorizada foram avaliadas antes e depois da administração de vasoconstritor. Os resultados foram comparados pelo teste de correlação de Spearman e pelo teste de Mann-Whitney (α = 0,05). Resultados Foram encontradas correlações positivas entre: (i) fluxo antes da administração de vasoconstritor e largura 4 (Rho = 0,380) e largura 5 (Rho = 0,371); (ii) largura 2 e área mínima de corte transversal 1 antes da administração de vasoconstritor (Rho = 0,380); (iii) fluxo antes da administração de vasoconstritor e volumes nasais de 0-5 cm (Rho = 0,421), 2-5 cm (Rho = 0,393) e área mínima de corte transversal 1 (Rho = 0,375); (iv) largura 4 e volume nasal de 0-5 cm antes da administração do vasoconstritor (Rho = 0,376), volume nasal de 2-5 cm antes do uso de vasoconstritor (Rho = 0,376), áreas mínimas de corte transversal 1 antes da administração de vasoconstritor (Rho = 0,410) e áreas mínimas de corte transversal 1 após o uso do vasoconstritor (Rho = 0,426); (v) largura 5 e largura 1 (Rho = 0,542), largura 2 (Rho = 0,411) e largura 4 (Rho = 0,429). Foram encontradas correlações negativas: (i) largura 4 e resistência inspiratória média (Rho = −0,385); (ii) resistência inspiratória média antes da administração de vasoconstritor e volume de 0-5 cm (Rho = −0,382) e resistência expiratória média antes da administração de vasoconstritor e área mínima de corte transversal 1 (Rho = −0,362). Conclusão Correlações foram encontradas entre a rinometria acústica, a rinomanometria computadorizada e a tomografia computadorizada de feixe cônico em respiradores bucais com atresia maxilar.

3.
Artigo em Inglês | MEDLINE | ID: mdl-28017262

RESUMO

INTRODUCTION: To provide clinical information and diagnosis in mouth breathers with transverse maxillary deficiency with posterior crossbite, numerous exams can be performed; however, the correlation among these exams remains unclear. OBJECTIVE: To evaluate the correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. METHODS: A cross-sectional study was conducted in 30 mouth breathers with transverse maxillary deficiency (7-13 y.o.) patients with posterior crossbite. The examinations assessed: (i) acoustic rhinometry: nasal volumes (0-5cm and 2-5cm) and minimum cross-sectional areas 1 and 2 of nasal cavity; (ii) computed rhinomanometry: flow and average inspiratory and expiratory resistance; (iii) cone-beam computed tomography: coronal section on the head of inferior turbinate (Widths 1 and 2), middle turbinate (Widths 3 and 4) and maxilla levels (Width 5). Acoustic rhinometry and computed rhinomanometry were evaluated before and after administration of vasoconstrictor. Results were compared by Spearman's correlation and Mann-Whitney tests (α=0.05). RESULTS: Positive correlations were observed between: (i) flow evaluated before administration of vasoconstrictor and Width 4 (Rho=0.380) and Width 5 (Rho=0.371); (ii) Width 2 and minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho=0.380); (iii) flow evaluated before administration of vasoconstrictor and nasal volumes of 0-5cm (Rho=0.421), nasal volumes of 2-5cm (Rho=0.393) and minimum cross-sectional areas 1 (Rho=0.375); (iv) Width 4 and nasal volumes of 0-5cm evaluated before administration of vasoconstrictor (Rho=0.376), nasal volumes of 2-5cm evaluated before administration of vasoconstrictor (Rho=0.376), minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho=0.410) and minimum cross-sectional areas 1 after administration of vasoconstrictor (Rho=0.426); (v) Width 5 and Width 1 (Rho=0.542), Width 2 (Rho=0.411), and Width 4 (Rho=0.429). Negative correlations were observed between: (i) Width 4 and average inspiratory resistance (Rho=-0.385); (ii) average inspiratory resistance evaluated before administration of vasoconstrictor and nasal volumes of 0-5cm (Rho=-0.382), and average expiratory resistance evaluated before administration of vasoconstrictor and minimum cross-sectional areas 1 (Rho=-0.362). CONCLUSION: There were correlations between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA