Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6862, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938232

RESUMO

Flexible metal-organic frameworks (MOFs) exhibiting adsorption-induced structural transition can revolutionise adsorption separation processes, including CO2 separation, which has become increasingly important in recent years. However, the kinetics of this structural transition remains poorly understood despite being crucial to process design. Here, the CO2-induced gate opening of ELM-11 ([Cu(BF4)2(4,4'-bipyridine)2]n) is investigated by time-resolved in situ X-ray powder diffraction, and a theoretical kinetic model of this process is developed to gain atomistic insight into the transition dynamics. The thus-developed model consists of the differential pressure from the gate opening (indicating the ease of structural transition) and reaction model terms (indicating the transition propagation within the crystal). The reaction model of ELM-11 is an autocatalytic reaction with two pathways for CO2 penetration of the framework. Moreover, gas adsorption analyses of two other flexible MOFs with different flexibilities indicate that the kinetics of the adsorption-induced structural transition is highly dependent on framework structure.

2.
Proc Natl Acad Sci U S A ; 120(31): e2305573120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487093

RESUMO

Flexible metal-organic frameworks (MOFs) exhibit an adsorption-induced structural transition known as "gate opening" or "breathing," resulting in an S-shaped adsorption isotherm. This unique feature of flexible MOFs offers significant advantages, such as a large working capacity, high selectivity, and intrinsic thermal management capability, positioning them as crucial candidates for revolutionizing adsorption separation processes. Therefore, the interest in the industrial applications of flexible MOFs is increasing, and the adsorption engineering for flexible MOFs is becoming important. However, despite the establishment of the theoretical background for adsorption-induced structural transitions, no theoretical equation is available to describe S-shaped adsorption isotherms of flexible MOFs. Researchers rely on various empirical equations for process simulations that can lead to unreliable outcomes or may overlook insights into improving material performance owing to parameters without physical meaning. In this study, we derive a theoretical equation based on statistical mechanics that could be a standard for the structural transition type adsorption isotherms, as the Langmuir equation represents type I isotherms. The versatility of the derived equation is shown through four examples of flexible MOFs that exhibit gate opening and breathing. The consistency of the formula with existing theories, including the osmotic free energy analysis and intrinsic thermal management capabilities, is also discussed. The developed theoretical equation may lead to more reliable and insightful outcomes in adsorption separation processes, further advancing the direction of industrial applications of flexible MOFs.

3.
Nat Commun ; 11(1): 3867, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747638

RESUMO

Establishing new energy-saving systems for gas separation using porous materials is indispensable for ensuring a sustainable future. Herein, we show that ELM-11 ([Cu(BF4)2(4,4'-bipyridine)2]n), a member of flexible metal-organic frameworks (MOFs), exhibits rapid responsiveness to a gas feed and an 'intrinsic thermal management' capability originating from a structural deformation upon gas adsorption (gate-opening). These two characteristics are suitable for developing a pressure vacuum swing adsorption (PVSA) system with rapid operations. A combined experimental and theoretical study reveals that ELM-11 enables the high-throughput separation of CO2 from a CO2/CH4 gas mixture through adiabatic operations, which are extreme conditions in rapid pressure vacuum swing adsorption. We also propose an operational solution to the 'slipping-off' problem, which is that the flexible MOFs cannot adsorb target molecules when the partial pressure of the target gas decreases below the gate-opening pressure. Furthermore, the superiority of our proposed system over conventional systems is demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...